AkaiKKRで最急降下法

擬ポテンシャル法を用いた第一原理計算パッケージは、多くの場合、結晶構造の最適化機能を持っています。しかしAkaiKKRにはそのような機能はありません。そこで、最急降下法を用いて全エネルギーが最小となる結晶構造を探してみました。
対象として選んだのは六方最密充填構造(hcp)のコバルトです。

steepest.png
Fig.1: 全エネルギーのカラーマップと最急降下法探索による全エネルギー最小化



結晶構造の最適化


多くの第一原理計算パッケージには、結晶構造の最適化機能があります。これは多くの場合、原子にかかる力を計算して、その方向に原子を動かすことによって実現されています。しかしながらAkaiKKR(machikaneyama)では原子にかかる力の計算が出来ません。AkaiKKRでも、全エネルギーが最小になるようにすることで結晶構造の最適化が出来るはずですが、手動ですべてのパラメータの探索を行うのは大変です。そこで最急降下法を使って全エネルギーが最小になる構造を探して見ます。
Scilabで最急降下法 その1Scilabで最急降下法 その2では、簡単な関数f(x,y)に対して、最小値を探すことで最急降下法のアルゴリズムを確認しました。今回は f(x,y)の代わりに第一原理計算を行います。今回はテスト計算として六方最密充填構造(hcp)のコバルトの計算をします。具体的には以下の3つのステップを行います。
  1. マフィンティン半径の決定
  2. エネルギーマップの作成
  3. 最急降下法計算


マフィンティン半径の決定


AkaiKKRで全エネルギーを比較するときは、色々な計算条件が変化しないようにする必要があります。特にマフィンティン半径の設定には注意が必要です。AkaiKKRの入力ファイルでは、マフィンティン半径は格子定数 a で規格化されます。私の理解では「AkaiKKRでマフィンティン半径を固定する」というのは「原子の位置や計算セルのサイズを変更したときに、計算セルの体積に対する各マフィンティン球の体積の比が変化しないようにする」ということです。(これは他の計算手法、例えばAPW法などとは違うことに注意が必要です。)この条件を満たす範囲でマフィンティン半径を最大になるようにするのが最良であると理解しています。(AkaiKKRでBain機構 その1その2も参照。)

そこでまず、全エネルギー最小を探索する格子定数の範囲を決めます。次に、その範囲でrmt=1としたときの実際のマフィンティン球の体積比が一番小さくなってしまう条件を探します。この条件でのマフィンティン半径を全ての計算に用いれば、マフィンティン球が重なることなく、かつ、マフィンティン半径を固定することが出来ます。
決められたマフィンティン半径は、格子体積の1/3乗で規格化しておくのが後々の事を考えると便利なはずです。具体的には下記のようなシェルスクリプトを作成し、計算しました。1.60 ≦ c/a ≦ 1.70 の範囲では rMT/V1/3 = 0.439518 ぐらいのようです。
このスクリプトを走らせる際には、第一原理計算を収束させる必要はないので bzqlty=0maxitr=0としておきます。

#!/bin/csh -f
#setenv GFORTRAN_UNBUFFERED_ALL y

## *** パラメーター範囲 ***
set COA_LIST=( 1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 )
set OMEGA_LIST=( 160 158 156 154 152 150 148 146 144 142 140 )

# set COA_LIST=( 1.63 )
# set OMEGA_LIST=( 150 )

## *** マフィンティン半径の計算 ***
set OMEGA=${OMEGA_LIST[1]}
set COA0=`echo $COA_LIST[1]`
set A0=`echo "e((1/3)*l(2*${OMEGA}/(sqrt(3)*${COA0})))" | bc -l`
if (`echo "${COA0} > 2*sqrt(2)/sqrt(3)" | bc -l` == 1) then
set RMTB0=`echo "${A0}/2" | bc -l`
else
set RMTB0=`echo "${A0}*sqrt(1/3+(${COA0}^2)/4)/2" | bc -l`
endif
set COA1=`echo $COA_LIST[$#COA_LIST]`
set A1=`echo "e((1/3)*l(2*${OMEGA}/(sqrt(3)*${COA1})))" | bc -l`
if (`echo "${COA1} > 2*sqrt(2)/sqrt(3)" | bc -l` == 1) then
set RMTB1=`echo "${A1}/2" | bc -l`
else
set RMTB1=`echo "${A1}*sqrt(1/3+(${COA1}^2)/4)/2" | bc -l`
endif
if (`echo "${RMTB0} < ${RMTB1}" | bc -l` == 1) then
set RMTB=`echo $RMTB0`
else
set RMTB=`echo $RMTB1`
endif
set RMTOMEGA=`echo "${RMTB}/e((1/3)*l(${OMEGA}))" | bc -l | sed -e 's/^\./0./g'`
echo ${RMTOMEGA}


なおhcp構造の場合はAkaiKKRでコバルトのc/a その2の方法でマフィンティン半径を決めることが出来るのですが、今回は将来的により複雑な構造をやることも考えてこのようにしました。

エネルギーマップの作成


必要ないはずの手順ですが、今回は最急降下法のテストでもあるので、考える体積・軸比の範囲の全ての全エネルギーを計算しておきます。この結果がFig.1のカラーコンターです。

Cシェルスクリプトには関数を実装することが出来ませんが、下請けのシェルスクリプトに変数を渡すことによって、それっぽい事は出来ます。
今回は という下請けのスクリプトを作成しました。これは、体積・軸比・マフィンティン半径の3つを引数として受け取り、第一原理計算を行って全エネルギーを返り値にします。

#!/bin/csh -f
##setenv GFORTRAN_UNBUFFERED_ALL y

## *** プロジェクト名 ***
set PROJECT="hcpCo"

## *** 実行ファイル ***
set EXEC="~/kkr/cpa2002v009c/specx"

## *** 標準入力から値を読み取る ***
## 格子体積
set OMEGA=$1
## c/a
set COA=$2
## RMT
set RMTOMEGA=$3

## ファイル名
set INFILE="in/${PROJECT}_go_${OMEGA}_${COA}.in"
set OUTFILE="out/${PROJECT}_go_${OMEGA}_${COA}.out"
set POTFILE="data/${PROJECT}_${OMEGA}_${COA}"
set POTBACK="data/${PROJECT}_${OMEGA}"

## 格子定数 a の計算
set ABOHR=`echo "scale=7; e((1/3)*l(2*${OMEGA}/(sqrt(3)*${COA})))" | bc -l | sed -e 's/^\./0./g'`
## マフィンティン半径の計算
set RMTA=`echo "scale=7; ${RMTOMEGA}*e((1/3)*l(${OMEGA}))/${ABOHR}" | bc -l | sed -e 's/^\./0./g'`

## テンプレートから入力ファイルを作成
sed 's/'OMEGA'/'${OMEGA}'/g' template/${PROJECT}_go_Template.in | sed 's/'ABOHR'/'${ABOHR}'/g' | sed 's/'COA'/'${COA}'/g' | sed 's/'RMTA'/'${RMTA}'/g' > ${INFILE}

## ポテンシャルファイルのコピー
if ( ! -e ${POTFILE} ) then
if ( -e ${POTBACK} ) then
cp ${POTBACK} ${POTFILE}
endif
endif

## 計算回数の初期化
set num=0
## 最大計算回数
set nummax=20
## 第一原理計算
${EXEC} < ${INFILE} > ${OUTFILE}
while ( ( ! { grep -q "err= -6." ${OUTFILE} } ) && ( $num < $nummax ) )
${EXEC} < ${INFILE} > ${OUTFILE}
@ num++
end

## ポテンシャルのバックアップ
cp ${POTFILE} ${POTBACK}

set ENE=`grep "total energy" ${OUTFILE} | sed -e s/total//g -e s/energy=//g`
echo ${ENE}


enemap.sh は下請けスクリプト dogo.sh を利用して 1.60 ≦ c/a ≦ 1.70, 140 ≦ V ≦ 160 の範囲で全エネルギーのマップを作ります。dogo.sh は最急降下法のシェルスクリプトでも利用します。

最急降下法


エネルギーのマップから最安定な格子定数が V = 150 Bohr3, c/a = 163 付近にあることが予想できます。とりあえず初期値を V = 156 Bohr3, c/a = 1.68 として計算してみます。その結果がFig.1上に白で示された経路です。最急降下法では、その関数の値の微分の方向に向かって次の入力パラメータを探します。今回の計算では、4回程度で格子定数の最適化が出来ている事が確認できます。

最急降下法のCシェルスクリプト steepest.sh は以下の通りです。

#!/bin/csh -f
#setenv GFORTRAN_UNBUFFERED_ALL y

## *** マフィンティン半径 ***
set RMTOMEGA=0.43951815598150528923

## *** 係数 ***
set KEISUU_OMEGA="10000.0"
set KEISUU_COA="0.5"

## *** 初期値 ***
set OMEGA=$1
set COA=$2

## *** 微分のステップ ***
set dOMEGA="1.0"
set dCOA="0.01"
set OMEGA_PLUS=`echo "${OMEGA}+${dOMEGA}" | bc -l`
set OMEGA_MINUS=`echo "${OMEGA}-${dOMEGA}" | bc -l`
set COA_PLUS=`echo "${COA}+${dCOA}" | bc -l`
set COA_MINUS=`echo "${COA}-${dCOA}" | bc -l`

## *** 第一原理計算 ***
set ENE=`./dogo.sh ${OMEGA} ${COA} ${RMTOMEGA}`
echo "Center energy:" ${ENE} "(Ry)"
set ENE_OMEGA_PLUS=`./dogo.sh ${OMEGA_PLUS} ${COA} ${RMTOMEGA}`
echo "Omega plus: " ${ENE_OMEGA_PLUS} "(Ry)"
set ENE_OMEGA_MINUS=`./dogo.sh ${OMEGA_MINUS} ${COA} ${RMTOMEGA}`
echo "Omega minus: " ${ENE_OMEGA_MINUS} "(Ry)"
set ENE_COA_PLUS=`./dogo.sh ${OMEGA} ${COA_PLUS} ${RMTOMEGA}`
echo "c/a plus: " ${ENE_COA_PLUS} "(Ry)"
set ENE_COA_MINUS=`./dogo.sh ${OMEGA} ${COA_MINUS} ${RMTOMEGA}`
echo "c/a minus: " ${ENE_COA_MINUS} "(Ry)"

## *** 数値微分(中心差分) ***
set dENEdOMEGA=`echo "(${ENE_OMEGA_PLUS}+(-1*${ENE_OMEGA_MINUS}))/(2*${dOMEGA})" | bc -l`
echo ${dENEdOMEGA}
set dENEdCOA=`echo "(${ENE_COA_PLUS}+(-1*${ENE_COA_MINUS}))/(2*${dCOA})" | bc -l`
echo ${dENEdCOA}

echo ${OMEGA} ${COA} ${ENE} >> analysis/steepest.txt

set OMEGA=`echo "scale=7; (${OMEGA}-${KEISUU_OMEGA}*${dENEdOMEGA})/1.0" | bc -l`
set COA=`echo "scale=7; (${COA}-${KEISUU_COA}*${dENEdCOA})/1.0" | bc -l`
echo "Next:"
echo "./steepest.sh" ${OMEGA} ${COA}


関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama Scilab KKR 強磁性 シェルスクリプト 

AkaiKKRで鉄のeg, t2g状態密度

第一原理計算入門 AkaiKKRのページで紹介されている方法に従ってAkaiKKR(machikaneyama)を用いて鉄のd状態密度をegとt2gに分解してプロットしました。

FePDOS.png

Fig.1: 強磁性体心立方構造鉄のd電子の部分状態密度



AkaiKKRの部分状態密度


AkaiKKR(machikaneyama)ではgoモードでセルフコンシステント計算を行った後、出力されたポテンシャルファイルからdosモードでspecxを実行することによって状態密度を計算することが出来ます。
状態密度は全状態密度とコンポーネントごとに分かれた部分状態密度の両方が出力されます。デフォルトでは部分状態密度は s, p, d, f, ...軌道に分かれて出力されます。第一原理計算入門 AkaiKKRのページではt2gやegに分解した部分状態密度を計算する方法が書かれています。
今回はこれにしたがって source/spmain.f を編集して鉄の部分状態密度を計算しました。

部分状態密度計算用の実行ファイル


第一原理計算入門 AkaiKKRのページに書かれている通りですが、手順を書きます。具体的には source/spmain.f を編集して再び make するだけです。

まず source/spmain.f と実行ファイルの specx のバックアップを取ります。
cp source/spmain.f source/spmain.f.back
mv specx specx.back


次に source/spmain.f の該当部分を第一原理計算入門 AkaiKKRのページに書かれている通りに編集します。(以下のコマンドでは emacs で編集していますが vi でも gedit でもお好きなエディタでどうぞ)
emacs -nw source/spmain.f


まず下記に該当する部分を探します。
c     --- print partial and the total DOS if required.
if(ids .eq. 1 .or. ids .eq. 2 .or. ids .eq. 3) then
estep=dble(e(2,is))-dble(e(1,is))
do 69 i=1,ncmpx
write(*,'(//1x,a,i2,a,i2)')'DOS of component',i
do 69 k=1,kk
xmd(i,k,1,is)=-dimag(wkc(2,i,k))/pi
cc & (-dimag(wkc(4,i,k))/pi)+(-dimag(wkc(2,i,k))/pi)
xmd(i,k,2,is)=-dimag(wkc(4,i,k))/pi
cc & (-dimag(wkc(4,i,k))/pi)-(-dimag(wkc(2,i,k))/pi)
c 69 write(*,'(1x,f7.4,3x,9f8.4)') dble(e(k,is))-ef(is)
c & ,( -dimag(wkc(l,i,k))/pi,l=1,mxl**2)
do 160 l=1,mxlcmp(i)
c do 160 l=1,2
do 160 m=1,2*(l-1)
160 wkc(l**2,i,k)=wkc(l**2,i,k)+wkc(l**2-m,i,k)
c wkc(5,i,k)=wkc(5,i,k)+wkc(6,i,k)+wkc(8,i,k)
c wkc(7,i,k)=wkc(7,i,k)+wkc(9,i,k)
69 write(*,'(1x,f7.4,3x,4f10.4)') dble(e(k,is))-ef(is)
& ,(-dimag(wkc(l**2,i,k))/pi,l=1,mxlcmp(i))
write(*,'(//1x,a/(1x,f12.7,f13.5))')
& 'total DOS',(dble(e(k,is))-estep/2d0-ef(is)
& ,dimag((detl(k,is)-detl(k-1,is))/(e(k,is)-e(k-1,is)))
& ,k=2,kk)
write(*,'(//1x,a/(1x,f12.7,f13.5))')
& 'integrated DOS',(dble(e(k,is))-ef(is)
& ,dimag(detl(k,is)),k=1,kk)


上記の部分をごっそりと削除して、下記の記述に置き換えます。

c     --- print partial and the total DOS if required.
if(ids .eq. 1 .or. ids .eq. 2 .or. ids .eq. 3) then
estep=dble(e(2,is))-dble(e(1,is))
write(*,'(///a)')
& '(PDOS DATA: Ry, s, px, pz, py, dxy, dyz, dz^2, dxz, dx^2-y^2)'
do 69 i=1,ncmpx
write(*,'(//1x,a,i2,a,i2)')'DOS of component',i
do 69 k=1,kk
xmd(i,k,1,is)=-dimag(wkc(2,i,k))/pi
cc & (-dimag(wkc(4,i,k))/pi)+(-dimag(wkc(2,i,k))/pi)
xmd(i,k,2,is)=-dimag(wkc(4,i,k))/pi
cc & (-dimag(wkc(4,i,k))/pi)-(-dimag(wkc(2,i,k))/pi)
69 write(*,'(1x,f7.4,3x,9f8.4)') dble(e(k,is))-ef(is)
& ,( -dimag(wkc(l,i,k))/pi,l=1,mxl**2)
c do 160 l=1,mxlcmp(i)
c do 160 l=1,2
c do 160 m=1,2*(l-1)
c 160 wkc(l**2,i,k)=wkc(l**2,i,k)+wkc(l**2-m,i,k)
c wkc(5,i,k)=wkc(5,i,k)+wkc(6,i,k)+wkc(8,i,k)
c wkc(7,i,k)=wkc(7,i,k)+wkc(9,i,k)
c 69 write(*,'(1x,f7.4,3x,4f10.4)') dble(e(k,is))-ef(is)
c & ,(-dimag(wkc(l**2,i,k))/pi,l=1,mxlcmp(i))
if(is .eq. 1) then
write(*,'(//1x,a/(1x,f12.7,f13.5))')
& 'total_up TDOS_up',(dble(e(k,is))-estep/2d0-ef(is)
& ,dimag((detl(k,is)-detl(k-1,is))/(e(k,is)-e(k-1,is)))
& ,k=2,kk)
write(*,'(//1x,a/(1x,f12.7,f13.5))')
& 'integrated_up IDOS_up',(dble(e(k,is))-ef(is)
& ,dimag(detl(k,is)),k=1,kk)
end if
if(is .eq. 2) then
write(*,'(//1x,a/(1x,f12.7,f13.5))')
& 'total_dn TDOS_dn',(dble(e(k,is))-estep/2d0-ef(is)
& ,dimag((detl(k,is)-detl(k-1,is))/(e(k,is)-e(k-1,is)))
& ,k=2,kk)
write(*,'(//1x,a/(1x,f12.7,f13.5))')
& 'integrated_dn IDOS_dn',(dble(e(k,is))-ef(is)
& ,dimag(detl(k,is)),k=1,kk)
end if


編集したら make を実行します。
make


出来たファイルはpdos用に別名保存するようにしました。ついでにバックアップしておいた通常の specx を復帰させておきます。
mv specx specx.pdos
mv specx.back specx


また source/spmain.f も元に戻しておいたほうがいいでしょう。代わりに編集したバージョンのバックアップを取っておきます。
mv source/spmain.f source/spmain.f.pdos
mv source/spmain.f.back source/spmain.f


鉄の計算


入力ファイルは通常の鉄の計算用のものと基本的には変わりませんが、今回の specx.pdos はd電子までしか計算できないので l=2 とします。また部分状態密度は全状態密度よりもギザギザになりやすいので bzqlty はかなり高めにしました。

c----------------------Fe------------------------------------
dos data/fe
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
bcc 5.27 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 nrl mjw mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 18 100 0.035
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Fe 1 1 0.0 2
26 100
c------------------------------------------------------------
c natm
1
c------------------------------------------------------------
c atmicx(in the unit of a) atmtyp
0 0 0 Fe
c------------------------------------------------------------


結果として得られる部分状態密度は s, p, py, pz,
dxy, dyz, dz2, dxz, dx2-z2の順に出力されます。
今回は eg=dz2+dx2-y2 と t2g = dxy+dyz+dxz についてプロットしました。


関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR 状態密度 DOS 

AkaiKKRのSICをOFFにするメモ

  • bccPtの全エネルギーの格子定数依存性に変な不連続
  • SICが原因
  • source/cstate.fの編集で対処可能


bccPt-jump.pngFig.1: bcc Pt の全エネルギージャンプ問題



bccPtの全エネルギーのジャンプ問題


AkaiKKR BBSのStep-wise shift of total energy along with lattice constantsにて体心立方構造(bcc)のプラチナの全エネルギー計算を行うと、特定の格子定数で階段状のエネルギーシフトが起こると報告しています。KKR Administratorさんの返信によると自己相互作用補正(Self-Interaction Correction; SIC)が悪さをしているとのことです。この問題に対処するには明示的にSICをOFFにするなどの方法があります。このためには source/cstate.fsicfalse に指定すればよいとのことです。

問題の再現


まず全エネルギーのジャンプの問題を再現するために以下の入力ファイルのテンプレートを用いて、格子定数を a = 5.2 - 6.6 Bohr の範囲で計算を行いました。

c------------------------------------------------------------
go data/bccPt_ABOHR
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
bcc ABOHR, , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.2 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 200 0.01
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Pt 1 1 0.0 2
78 100
c------------------------------------------------------------
c natm
1
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Pt
c------------------------------------------------------------


Fig.1に格子定数と全エネルギーの関係を示します。a = 5.5 Bohr と a = 5.6 Bohr の間で全エネルギーにジャンプがある事がわかります。

source/cstate.fの編集


このエネルギーのジャンプの問題を解決するためには source/cstate.f を編集して再び make し、実行ファイルを作成しなおす必要があります。AkaiKKR BBSでは2種類の解決方法が提示されていますが、今回は単純にSICをOFFにする方法を試します。

source/cstate.f の最初のほうに以下のような記述があります。

      data istop/50/, tol/1d-8/, eb/-20d0/, sic/.true./
& ,eoff/ 1d3, 1d3, 1d3,-4d0/


SICをOFFにするには true の部分を false に編集します。

      data istop/50/, tol/1d-8/, eb/-20d0/, sic/.false./
& ,eoff/ 1d3, 1d3, 1d3,-4d0/


今回のような問題が起こらない場合はSICをONにしておいた方がよいと思われます。私は今回 make した実行ファイルは specx.sicoff という名前で別に保存しました。

SICをOFFにした計算結果をFig.2に示します。

bccPt-SIC-OFF.png
Fig.2: 全エネルギーに不自然なジャンプが無くなった bccPt の格子定数と全エネルギーの関係


全エネルギーに不連続が無くなり a = 5.9 Bohr 付近に平衡格子定数があることが分かります。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR SIC 

AkaiKKRのk点メッシュ

AkaiKKR(machikaneyama)の計算に使われるk点の数は、入力ファイルの bzqlty で指定されます。計算で実際に使われた既約的ブリルアンゾーンのk点の数は、出力の nk に表示されます。

計算に使用したk点の数の表し方には、既約的ブリルアンゾーンの中のk点数のほかに、全ブリルアンゾーンの中でそれぞれの逆格子ベクトルをメッシュ状に何分割したかを N1 × N2 × N3 のような形で表すやり方もあります。
この分割数の情報は、通常出力されないのですが、必要なら source/bzmesh.fend 文の直前に以下の行を追加することで、出力されるようにできると教えていただきました。

      write(*,'(3x,3(a,i3))')'nfa=',nfa,'  nfb=',nfb,'  nfc=',nfc


fcc等の立方晶の場合は単純に nfa=nfb=nfc=bzqlty となります。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR bzqlty 

AkaiKKRのewidth対応表

AkaiKKR(machikaneyama)を使って状態密度(dos)やバンド構造(spc)を計算する場合、セルフコンシステント計算(go)のときと ewidth の範囲が異なります。(参考: AkaiKKRのewidth その1, その2)

デフォルトでは、go計算よりdos計算やspc計算のときに1/4だけエネルギー範囲が正の方向へずらしてあります。
したがって、go計算のときにエネルギー範囲の底がコアにかかっていないかを確認したいときには、状態密度(dos)やバンド構造(spc)を計算するときに、すこし大き目の ewidth を選ばなければなら無い事になります。別に厳密な値にしなくてもいいのですが、キリのよさそうな値を一覧にしました。

godos/spc
0.60.8
0.91.2
1.21.6
1.52.0
1.82.4
2.12.8
2.43.2
2.73.6
3.04.0
table.1: go計算とdos計算で計算範囲の底が同じになるようにするためのewidthの設定値


関連エントリ




参考URL




参考文献/使用機器





フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。

tag: AkaiKKR machikaneyama KKR ewidth 

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性OPアンプPICCPA常微分方程式モンテカルロ解析ecaljodeトランジスタ状態密度インターフェースDOS定電流スイッチング回路PDS5022半導体シェルスクリプトレベルシフト乱数HP6632AR6452AI2C可変抵抗分散関係トランジスタ技術ブレッドボード温度解析反強磁性確率論バンドギャップセミナー数値積分熱設計非線形方程式ソルババンド構造絶縁偏微分方程式ISO-I2CLM358フォトカプラ三端子レギュレータカオスLEDシュミットトリガGW近似A/Dコンバータ発振回路PC817C直流動作点解析USBマフィンティン半径数値微分アナログスイッチTL43174HC4053カレントミラーサーボ量子力学単振り子チョッパアンプ補間2ちゃんねる開発環境bzqltyFFT電子負荷LDAイジング模型BSch基本並進ベクトルブラべ格子パラメトリック解析標準ロジックアセンブラ繰り返し六方最密充填構造SMPコバルトewidthFET仮想結晶近似QSGW不規則合金VCAMaximaGGA熱伝導cygwinスレーターポーリング曲線キュリー温度スイッチト・キャパシタ失敗談ランダムウォークgfortran抵抗相対論位相図スピン軌道相互作用VESTA状態方程式TLP621ラプラス方程式TLP552条件分岐NE555LM555TLP521マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測QNAPUPSWriter509ダイヤモンドデータロガー格子比熱熱力学awkブラウン運動起電力スーパーセル差し込みグラフ第一原理計算フェルミ面fsolve最大値xcrysden最小値最適化ubuntu平均場近似OpenMP井戸型ポテンシャルシュレディンガー方程式固有値問題2SC1815結晶磁気異方性OPA2277非線型方程式ソルバTeXgnuplot固定スピンモーメントFSMPGAc/a全エネルギーfccフラクタルマンデルブロ集合正規分布縮退初期値interp1multiplotフィルタ面心立方構造ウィグナーザイツ胞L10構造半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度化学反応CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタルキーボードフォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt合金等高線線種凡例シンボルトラックボールPC軸ラベルグラフの分割トランス文字列CK1026MAS830L直流解析Excel不規則局所モーメントパラメータ・モデル入出力日本語最小二乗法等価回路モデルヒストグラムGimp円周率TS-110TS-112PIC16F785LMC662三次元specx.fifortUbuntu疎行列不純物問題Realforceジバニャン方程式ヒストグラム確率論マテリアルデザインP-10境界条件連立一次方程式熱拡散方程式AACircuitHiLAPW両対数グラフ片対数グラフ陰解法MBEナイキスト線図負帰還安定性Crank-Nicolson法EAGLE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ