PWscfでMg2Siのゼーベック係数

UbuntuにBoltzTraPをインストールではUbuntuでPWscf(Quantum ESPRESSO)と連携することを前提にBoltzTraPをインストールしました。今回は Mg2Si を例にゼーベック係数を計算してみます。

300K.png
Fig.1: Mg2Si の 300 K でのゼーベック係数のエネルギー依存性



構造緩和計算


PWscfの入力作成補助にあるように xtl2pw.py がインストールされているという前提でMg2Si の CIF ファイルから PWscf (Quantum ESPRESSO) の入力ファイルを作成します。

最初にMg2SiのCIFファイルを入手します。今回はMaterials projectのページから Primitive Cell のモノをダウンロードしました。このCIFファイルを VESTA で開いて xtl 形式でエクスポートします(Mg2Si.xtl)。

DFT計算用のマシンに Mg2Si/ ディレクトリを作成し、そこに Mg2Si.xtl を置きます。これを xtl2pw.py に渡して入力ファイルのひな型を作ります。

xtl2pw.py Mg2Si.xtl vc-relax 1


作成された入力ファイルのひな型を基に、構造緩和計算用の入力ファイルを作成します。

mv Mg2Si.in Mg2Si.relax.in
emacs -nw Mg2Si.relax.in


擬ポテンシャルファイルやカットオフを正しく設定することに加えて system に以下を追記します。

    occupations = 'smearing' ,
degauss = 0.005 ,


私の環境では、以下のような入力ファイルになりました。

&control
calculation='vc-relax' ,
restart_mode='from_scratch' ,
prefix='Mg2Si' ,
outdir = './Mg2Si/' ,
wfcdir = './Mg2Si/' ,
pseudo_dir = './' ,
disk_io='default' ,
forc_conv_thr= 0.001 ,
verbosity = 'default' ,
nstep = 100 ,
/
&system
ibrav= 5 ,
celldm(1) = 8.50304569 ,
celldm(4) = 0.50000000 ,
nat = 3 ,
ntyp = 2 ,
ecutwfc = 50.0 ,
ecutrho = 250.0 ,
occupations = 'smearing' ,
degauss = 0.005 ,
/
&electrons
electron_maxstep = 100 ,
mixing_beta = 0.7 ,
! use smaller conv_thr for better results ,
conv_thr = 1.0d-12 ,
/
&ions
ion_dynamics='bfgs' ,
/
&CELL
cell_dynamics = 'bfgs' ,
press = 0.001,
press_conv_thr = 0.05 ,
! cell_dofree = 'xyz' ,
/
ATOMIC_SPECIES
Mg 24.305 Mg.pbe-n-kjpaw_psl.0.3.0.upf
Si 28.086 Si.pbe-n-kjpaw_psl.0.1.UPF
ATOMIC_POSITIONS crystal
Mg 0.750000 0.750000 0.750000 0 0 0
Mg 0.250000 0.250000 0.250000 0 0 0
Si 0.000000 0.000000 0.000000 0 0 0
K_POINTS automatic
4 4 4 0 0 0


これを pw.x に渡して構造緩和計算を行います。

mpirun -np 4 pw.x < Mg2Si.relax.in > Mg2Si.relax.out


nscf計算


次にnscf計算を行います。まずは構造緩和計算の入力ファイルを基にnscf計算の入力ファイルを作成します。

cp Mg2Si.relax.in Mg2Si.nscf.in
emacs -nw Mg2Si.nscf.in


変更点は以下です。
    calculation='nscf' ,
verbosity = 'high' ,
K_POINTS automatic
10 10 10 0 0 0


k点はもっと細かく採った方がいいかもしれませんが、今回は練習なのでこの程度にしておきます。

&control
calculation='nscf' ,
restart_mode='from_scratch' ,
prefix='Mg2Si' ,
outdir = './Mg2Si/' ,
wfcdir = './Mg2Si/' ,
pseudo_dir = './' ,
disk_io='default' ,
forc_conv_thr= 0.001 ,
verbosity = 'high' ,
nstep = 100 ,
/
&system
ibrav= 5 ,
celldm(1) = 8.50304569 ,
celldm(4) = 0.50000000 ,
nat = 3 ,
ntyp = 2 ,
ecutwfc = 50.0 ,
ecutrho = 250.0 ,
occupations = 'smearing' ,
degauss = 0.005 ,
/
&electrons
electron_maxstep = 100 ,
mixing_beta = 0.7 ,
! use smaller conv_thr for better results ,
conv_thr = 1.0d-12 ,
/
&ions
ion_dynamics='bfgs' ,
/
&CELL
cell_dynamics = 'bfgs' ,
press = 0.001,
press_conv_thr = 0.05 ,
! cell_dofree = 'xyz' ,
/
ATOMIC_SPECIES
Mg 24.305 Mg.pbe-n-kjpaw_psl.0.3.0.upf
Si 28.086 Si.pbe-n-kjpaw_psl.0.1.UPF
ATOMIC_POSITIONS crystal
Mg 0.750000 0.750000 0.750000 0 0 0
Mg 0.250000 0.250000 0.250000 0 0 0
Si 0.000000 0.000000 0.000000 0 0 0
K_POINTS automatic
10 10 10 0 0 0


これを実行します。

mpirun -np 4 pw.x < Mg2Si.nscf.in > Mg2Si.nscf.out


BoltzTraPの実行


BoltzTraP に渡すためのファイルを作成します。最初にnscf計算の結果からフェルミエネルギーを読み出します。

grep "Fermi" Mg2Si.nscf.out


つぎに qe2boltz.py を用いて BoltzTraP に与えるバンド構造の数値データや計算の設定ファイルを作成します。

qe2boltz.py Mg2Si pw 4.5310 0


4.5310の部分は、先ほど読みだしたフェルミエネルギーの値です。
これを走らせると Mg2Si.intrans や Mg2Si.energy が出力されます。
Mg2Si.intrans が BoltzTraP に与える計算の設定が書かれたファイルなので、適宜編集します。

emacs -nw Mg2Si.intrans


編集したら以下のように BoltzTraP を実行します。

x_trans BoltzTraP


300Kのデータのプロット


色々なファイルが出力されますが、もっとも重要なのは Mg2Si.trace です。
開いてみると1列目にエネルギー(フェルミエネルギーと書いてありますが、ただのエネルギーだと思います、状態密度の横軸とおなじ意味での)、2列目に温度、3列目以降に色々な物性が出力されており、今回の目的のゼーベック係数は5列目にあります。
今回は300Kにおけるゼーベック係数をエネルギーの関数としてプロットしてみます。そのままだとプロットしにくいので300Kのデータだけ抜き出します。

awk '{if($2 == 300){print $0}}' Mg2Si.trace > 300K.txt


こうして得られたデータをプロットするためのgnuplot用のpltファイルを下記のように準備しました。

set terminal pngcairo size 520,390
set output "300K.png"

set ylabel "Seebeck coefficient (uV/K)"
set title "Seebeck coefficient of Mg2Si at 300 K"

set xlabel "Energy (eV)"
set xrange [-2:2]
plot "300K.txt" u (($1-0.334102802189)*13.6058):($5*1E6) w l not


関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: PWscf QuantumESPRESSO ゼーベック係数 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式odeトランジスタインターフェースDOSスイッチング回路定電流PDS5022分散関係半導体シェルスクリプトレベルシフト乱数HP6632AR6452Aブレッドボード温度解析トランジスタ技術可変抵抗I2Cバンドギャップ数値積分セミナー確率論反強磁性バンド構造偏微分方程式非線形方程式ソルバ絶縁熱設計A/DコンバータシュミットトリガPWscfマフィンティン半径フォトカプラ三端子レギュレータLM358カオスGW近似LEDISO-I2C補間74HC4053TL431アナログスイッチサーボ数値微分発振回路カレントミラーPC817CUSB直流動作点解析標準ロジックアセンブラVESTAbzqlty電子負荷パラメトリック解析2ちゃんねるチョッパアンプ単振り子量子力学BSch開発環境トレーナーバトルFFTスーパーリーグ基本並進ベクトルブラべ格子LDAイジング模型ポケモンGOQuantumESPRESSOキュリー温度Quantum_ESPRESSO仮想結晶近似Maxima六方最密充填構造熱伝導スピン軌道相互作用抵抗失敗談相対論GGA繰り返しラプラス方程式VCAコバルトgfortran状態方程式不規則合金スイッチト・キャパシタTLP621ランダムウォークQSGWFETewidth最適化位相図SMPcygwinスレーターポーリング曲線シュレディンガー方程式固有値問題条件分岐Writer509awkデータロガーマントル自動計測ガイガー管詰め回路MCU三角波ダイヤモンド過渡解析ハーフメタルubuntu格子比熱UPSQNAPFXA-7020ZR井戸型ポテンシャルテスタ熱力学LM555平均場近似UbuntuNE555最大値第一原理計算最小値TLP521フェルミ面ZnOCIF差し込みグラフ起電力ゼーベック係数TLP552fsolveスーパーセルブラウン運動OpenMPxcrysden不純物問題擬ポテンシャルハイパーリーグgnuplotc/a全エネルギー状態図multiplot合金P-10磁気モーメントcif2cellPWgui半金属BaOOPA2277ウルツ鉱構造edelt2SC1815リジッドバンド模型ナイキスト線図岩塩構造スワップ領域PGA二相共存重積分ノコギリ波ルチル構造CapSenseSICデバイ模型quantumESPRESSOフィルタフォノン電荷密度Excel円周率初期値ヒストグラムGimpシンボル凡例線種interp1不規則局所モーメントウィグナーザイツ胞縮退疎行列文字列PvP入出力軸ラベルグラフの分割specx.fifort正規分布マテリアルデザインヒストグラム確率論等高線ジバニャン方程式境界条件連立一次方程式両対数グラフ片対数グラフHiLAPW熱拡散方程式Crank-Nicolson法陰解法化学反応三次元トラックボールMAS830LCK1026PC直流解析TS-112TS-110トランスPIC16F785MBEEAGLEAACircuit固定スピンモーメントLMC662FSM等価回路モデルパラメータ・モデルフラクタルマンデルブロ集合L10構造fcc面心立方構造クーロン散乱キーボードRealforce最小二乗法日本語関数フィッティングTeX非線型方程式ソルバ結晶磁気異方性負帰還安定性

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ