PWscfでシリコンのバンド構造

3. グラフェンのバンド構造と状態密度を参考に Quantum ESPRESSO(PWscf)を用いてシリコンのバンド構造を計算してみました。

Si-band.png
Fig.1: シリコンのバンド構造



セルフコンシステント計算


以下のようにシリコンの入力ファイルを作ります。
何らかの作成補助を使うとラクかもしれません(参考: PWscfの入力作成補助)。
今回は構造緩和を行うため vc-relax を利用しました。

xtl2pw.pw Si.xtl vc-relax 1


このままだと単位胞に原子を8個含む単純立方格子なので、ブラベ格子を fcc (ibrav=2)にして ATOMIC_POSITIONS もそれに倣うように編集し、これを走らせます。

mpirun -np 4 pw.x < Si.relax.in | tee Si.relax.out


&control
calculation='vc-relax' ,
restart_mode='from_scratch' ,
prefix='Si' ,
outdir = './Si/' ,
wfcdir = './Si/' ,
pseudo_dir = './' ,
disk_io='default' ,
forc_conv_thr= 0.001 ,
verbosity = 'default' ,
nstep = 100 ,
/
&system
ibrav= 2 ,
celldm(1) = 10.26221441
nat = 2 ,
ntyp = 1 ,
ecutwfc = 50.0 ,
ecutrho = 250.0 ,
/
&electrons
electron_maxstep = 100 ,
mixing_beta = 0.7 ,
! use smaller conv_thr for better results ,
conv_thr = 1.0d-12 ,
/
&ions
ion_dynamics='bfgs' ,
/
&CELL
cell_dynamics = 'bfgs' ,
press = 0.001,
press_conv_thr = 0.05 ,
! cell_dofree = 'xyz' ,
/
ATOMIC_SPECIES
Si 28.086 Si.pbe-n-kjpaw_psl.0.1.UPF
ATOMIC_POSITIONS crystal
Si 0.000000 0.000000 0.000000 0 0 0
Si 0.250000 0.250000 0.250000 0 0 0
K_POINTS automatic
4 4 4 0 0 0


nscf計算


セルフコンシステント計算の入力ファイルをコピーして nscf 計算の入力ファイルを作成します。

cp Si.relax.in Si.nscf.in


その後、以下の点を編集します。

  • calculation='bands'
  • nbnd=12
  • K_POINTS {crystal_b}


nbnd はバンドの数です。省略すると価電子数の半分×原子の個数(Siの場合はnbnd=4)となります。そうすると、半導体の場合は、価電子帯のみが計算されることになるので、少し大きめに取っておくほうがいいと思います。今回は nbnd=12 としました。

K_POINTS {crystal_b} の後の L 20 とかは、バンド構造をプロットする特徴的なk点のパスです。
最初の数字が特徴的なk点の数(だと思う)で、文字の後の数字が分割数(だと思う)です。LはL点、gGはΓ点で、この標記で使える点の名前は Doc/brillouin_zones.pdf を参照との事です。

mpirun -np 4 pw.x < Si.nscf.in | tee Si.nscf.out


なお nscf 計算用の入力ファイルの格子定数などは、構造緩和をする前の値のままですが、実際の nscf 計算では、ちゃんと構造緩和後の値を使ってくれます。

&control
calculation='bands' ,
restart_mode='from_scratch' ,
prefix='Si' ,
outdir = './Si/' ,
wfcdir = './Si/' ,
pseudo_dir = './' ,
disk_io='default' ,
forc_conv_thr= 0.001 ,
verbosity = 'default' ,
nstep = 100 ,
/
&system
ibrav= 2 ,
celldm(1) = 10.26221441
nat = 2 ,
ntyp = 1 ,
ecutwfc = 50.0 ,
ecutrho = 250.0 ,
nbnd = 12 ,
/
&electrons
electron_maxstep = 100 ,
mixing_beta = 0.7 ,
! use smaller conv_thr for better results ,
conv_thr = 1.0d-12 ,
/
&ions
ion_dynamics='bfgs' ,
/
&CELL
cell_dynamics = 'bfgs' ,
press = 0.001,
press_conv_thr = 0.05 ,
! cell_dofree = 'xyz' ,
/
ATOMIC_SPECIES
Si 28.086 Si.pbe-n-kjpaw_psl.0.1.UPF
ATOMIC_POSITIONS crystal
Si 0.000000 0.000000 0.000000 0 0 0
Si 0.250000 0.250000 0.250000 0 0 0
K_POINTS {crystal_b}
5
L 20
gG 20
X 20
W 20
gG 20


プロット用データの出力


このまででバンド計算は完了しています。次に gnuplot でプロットしやすい形式に直します。
以下のように Si.band.in を用意します。

&bands
outdir = './Si/' ,
prefix='Si' ,
filband='Si.band' ,
lsym=.true.
/


実行ファイルは bands.x です。

mpirun -np 4 bands.x < Si.band.in | tee Si.band.out


実行後に作成された Si.band.gnu が gnuplot 用の数値データです。

プロット


gnuplot でプロットするための plt ファイルとして以下のようなものを準備しました。

set terminal pngcairo size 520,390
set output "Si-band.png"

## *** Plot range ***
x1=0.8585
x2=1.8499
x3=2.3455
xmax=3.4539
set xrange [0:xmax]
set yrange [-15:10]

ef=5.9827

set xzeroaxis
set grid x

set ylabel "Energy (eV)"
set xtics ("{L}" 0, "{/Symbol G}" x1, "{X}" x2, "{W}" x3, "{/Symbol G}" xmax)
set x2tics ("{L}" 0, "{/Symbol G}" x1, "{X}" x2, "{W}" x3, "{/Symbol G}" xmax)

plot "Si.band.gnu" u 1:($2-ef) w lp not


特徴的なk点の座標は Si.band.out の中を見ると、以下のように書かれています。

     high-symmetry point:  0.4957 0.4957 0.4957   x coordinate   0.0000
high-symmetry point: 0.0000 0.0000 0.0000 x coordinate 0.8585
high-symmetry point: 0.0000 0.9913 0.0000 x coordinate 1.8499
high-symmetry point: 0.4957 0.9913 0.0000 x coordinate 2.3455
high-symmetry point: 0.0000 0.0000 0.0000 x coordinate 3.4539


エネルギーの単位は eV のようです。

Too many bands... と言われる場合


バンド計算をすると Too many bands are not converged from nscf calculation というメッセージが出て計算が止まることがあります。Google 検索をすると対策として下記の[Pw_forum] Too many bands are not converged from nscf calculationがヒットします。

Hi,Zhiting Tian
"Too many bands are not converged" can be solved for two way:
1.increase ecutwfc
2.decrease conv_thr
or both do them.

Best
Regards
--
Yun Song,Kang
Physical Science and Technology of Inner Mongolia University.
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://www.democritos.it/pipermail/pw_forum/attachments/20110926/8f5f3309/attachment.htm


ここに書かれている通り ecutwf を大きくするか、conv_thr を小さくすると計算できるようになります。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: バンド構造 QuantumESPRESSO PWscf 分散関係 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式odeトランジスタインターフェースDOSスイッチング回路定電流PDS5022分散関係半導体シェルスクリプトレベルシフト乱数HP6632AR6452Aブレッドボード温度解析トランジスタ技術可変抵抗I2Cバンドギャップ数値積分セミナー確率論反強磁性バンド構造偏微分方程式非線形方程式ソルバ絶縁熱設計A/DコンバータシュミットトリガPWscfマフィンティン半径フォトカプラ三端子レギュレータLM358カオスGW近似LEDISO-I2C補間74HC4053TL431アナログスイッチサーボ数値微分発振回路カレントミラーPC817CUSB直流動作点解析標準ロジックアセンブラVESTAbzqlty電子負荷パラメトリック解析2ちゃんねるチョッパアンプ単振り子量子力学BSch開発環境トレーナーバトルFFTスーパーリーグ基本並進ベクトルブラべ格子LDAイジング模型ポケモンGOQuantumESPRESSOキュリー温度Quantum_ESPRESSO仮想結晶近似Maxima六方最密充填構造熱伝導スピン軌道相互作用抵抗失敗談相対論GGA繰り返しラプラス方程式VCAコバルトgfortran状態方程式不規則合金スイッチト・キャパシタTLP621ランダムウォークQSGWFETewidth最適化位相図SMPcygwinスレーターポーリング曲線シュレディンガー方程式固有値問題条件分岐Writer509awkデータロガーマントル自動計測ガイガー管詰め回路MCU三角波ダイヤモンド過渡解析ハーフメタルubuntu格子比熱UPSQNAPFXA-7020ZR井戸型ポテンシャルテスタ熱力学LM555平均場近似UbuntuNE555最大値第一原理計算最小値TLP521フェルミ面ZnOCIF差し込みグラフ起電力ゼーベック係数TLP552fsolveスーパーセルブラウン運動OpenMPxcrysden不純物問題擬ポテンシャルハイパーリーグgnuplotc/a全エネルギー状態図multiplot合金P-10磁気モーメントcif2cellPWgui半金属BaOOPA2277ウルツ鉱構造edelt2SC1815リジッドバンド模型ナイキスト線図岩塩構造スワップ領域PGA二相共存重積分ノコギリ波ルチル構造CapSenseSICデバイ模型quantumESPRESSOフィルタフォノン電荷密度Excel円周率初期値ヒストグラムGimpシンボル凡例線種interp1不規則局所モーメントウィグナーザイツ胞縮退疎行列文字列PvP入出力軸ラベルグラフの分割specx.fifort正規分布マテリアルデザインヒストグラム確率論等高線ジバニャン方程式境界条件連立一次方程式両対数グラフ片対数グラフHiLAPW熱拡散方程式Crank-Nicolson法陰解法化学反応三次元トラックボールMAS830LCK1026PC直流解析TS-112TS-110トランスPIC16F785MBEEAGLEAACircuit固定スピンモーメントLMC662FSM等価回路モデルパラメータ・モデルフラクタルマンデルブロ集合L10構造fcc面心立方構造クーロン散乱キーボードRealforce最小二乗法日本語関数フィッティングTeX非線型方程式ソルバ結晶磁気異方性負帰還安定性

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ