Kelvinの公式でSeebeck係数

AkaiKKR(machikaneyama)で計算された状態密度から Kelvin の公式を利用して、遷移金属のゼーベック係数を計算しました。
\begin{equation}
S = - \frac{1}{|e|}\frac{\mathrm{d}\mu}{\mathrm{d}T}
\end{equation}
ここで S はゼーベック係数、 e は電気素量、 μ は化学ポテンシャル、T は絶対温度です。結果はそこそこ良く実験値を再現しました。

Kelvin.png
Fig.1: Kelvinの公式で計算されたゼーベック係数(実線)と実験から得られた文献値(丸シンボル)。パラジウム(赤)、プラチナ(青)、タングステン(緑)、モリブデン(黒)。



ゼーベック係数


ゼーベック係数(熱電能)は、以下の式で表されます。

\begin{equation}
S = \frac{1}{eT}\frac{K_1}{K_0}
\end{equation}
ここでKn
\begin{equation}
K_n = \int_{-\infty}^{\infty}\sigma(\epsilon)(\epsilon - \mu)^{n} \left( - \frac{\mathrm{d}f}{\mathrm{d}\epsilon}\right) \mathrm{d}\epsilon
\end{equation}

この式の中の σ(ε) はエネルギーに依存する電気伝導度とでも呼ぶべきもので、これを具体的に計算するには、通常のバンド計算から得られる電子の群速度に加えて、電子がどのように散乱されるかを表す散乱時間も必要になります。これは不可能ではありませんが、結構大変です。

これに対して熱電材料の物質科学―熱力学・物性物理学・ナノ科学 (物質・材料テキストシリーズ)では、とても簡単な近似式として Kelvin の公式を示しています。
\begin{equation}
S = - \frac{1}{e}\frac{\mathrm{d}\mu}{\mathrm{d}T}
\end{equation}
Scilabで金属の化学ポテンシャルに書いたとおり、金属の状態密度さえ分かっていれば化学ポテンシャルは計算できるので、バンド計算的には、とても簡単な手法です。(というか、これで精度よくゼーベック係数が計算できるのなら、群速度とか散乱時間とか一体なんだったのという感じ)

計算手順


まずAkaiKKRで状態密度を計算しました。2500 K 程度なら化学ポテンシャルの大きさもたいしたこと無いはずなので ewidth を小さくして計算すべきですが、雑な計算ということで価電子を全て含むエネルギーとしました。

c------------------------------------------------------------
go data/Pt
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 7.41 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 0.9 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 200 0.023
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Pt 1 1 0.0 2
78 100
c------------------------------------------------------------
c natm
1
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Pt
c------------------------------------------------------------

c------------------------------------------------------------
dos data/Pt
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 7.41 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.2 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 20 200 0.023
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Pt 1 1 0.0 2
78 100
c------------------------------------------------------------
c natm
1
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Pt
c------------------------------------------------------------


Pt-DOS.png
Fig.2: プラチナの状態密度


次に計算された状態密度から、電子の数密度neを計算します。
\begin{equation}
n_e = \int_{-\infty}^{\infty}D(\epsilon)f(\epsilon, T)\mathrm{d}\epsilon
\end{equation}
ここでフェルミ分布関数は以下のようになります。
\begin{equation}
f(\epsilon, T) = \frac{1}{\exp \left(\frac{\epsilon - \mu(T)}{k_B T} \right) + 1}
\end{equation}

電子の数密度neは温度に関わらず一定なので、絶対零度 T = 0 (K) のときの電子数密度 ne0 をまず計算します。フェルミ分布関数はこのとき ε < εF で f(ε, 0) = 1, ε > εF で f(ε, 0) = 0 なので
\begin{equation}
n_{e0} = \int_{-\infty}^{0} D(\epsilon) \mathrm{d}\epsilon
\end{equation}
です。

あとは以下の条件を満たすように非線型方程式ソルバで、化学ポテンシャルμを求めます。
\begin{equation}
\int_{-\infty}^{\infty}D(\epsilon)f(\epsilon, T)\mathrm{d}\epsilon - n_{e0} = 0
\end{equation}

化学ポテンシャルが計算できたら、これを数値微分します。
\begin{equation}
\frac{\mathrm{d}\mu}{\mathrm{d}T} \sim \frac{\mu(T+\Delta T) - \mu(T - \Delta T)}{2\Delta T}
\end{equation}

clear;

// *** 物理定数 ***
// アボガドロ数 (/mol)
na = 6.0221413E23;
// 1 (Ry) = 2.179872E-18 (J)
eRy = 2.179872E-18; //(J)
// リュードベリ原子単位系でのボルツマン定数
// Boltzmann constant kB = 1.3806488E-23 (J/K)
kB = 1.3806488E-23 / eRy; // (Ry/K)
// 電気素量
chage = 1.60217662E-19;

// *** 状態密度の読み出し ***
X = fscanfMat("Kelvin-Pt-calc.txt");
Edat = X(:,1);
Ddat = 2 * X(:,2);

// *** 計算用 ***
// エネルギー
E = linspace(min(Edat), max(Edat), 10000);
// 温度
tstart = 10; tstep = 10; tend = 2500;
T = [tstart:tstep:tend];
// 状態密度
D = interp1(Edat, Ddat, E, "linear");

// *** フェルミ分布関数 ***
function fermi = fermi(mu, energy, temp)
fermi = 1 ./ (exp((energy - mu) ./ (kB * temp)) + 1)
endfunction

// *** フェルミ分布関数 ***
n = intsplin(E, (D .* fermi(0, E, 0)));
function y = f1(x, temp)
y = intsplin(E, D .* fermi(x, E, temp)) - n
endfunction

// *** 化学ポテンシャル ***
Snum = ones(T);
for i = 1:length(T) do
temp = 1.01 * T(i);
mu1 = fsolve(0, f1);
temp = 0.99 * T(i);
mu2 = fsolve(0, f1);
// 数値計算による電子比熱
Snum(i) = - eRy * (mu1 - mu2) / (0.02 * T(i)) / chage;
end

// 数値計算による電子比熱
plot(T, 1E6 * Snum, "-b");
Y = fscanfMat("Kelvin-Pt-lit.txt");
plot(Y(:,1), Y(:,2), ".b");

// *** グラフの装飾 ***
xlabel("Temperature (K)");
ylabel("Seebeck coefficient (uV/K)");
xgrid(color("gray"));


Sommerfeld展開


Scilabで金属の化学ポテンシャルでは Sommerfeld 展開から得られた化学ポテンシャルが以下のように書かれるとしています。
\begin{equation}
\mu = \epsilon_F - \frac{\pi^2}{6}k_B^2 \frac{D'(\epsilon_F)}{D(\epsilon_F)}T^2
\end{equation}
したがって、その温度微分は以下のようになります。
\begin{equation}
\frac{\mathrm{d}\mu}{\mathrm{d}T} = - \frac{\pi^2}{3}k_B^2 \frac{D'(\epsilon_F)}{D(\epsilon_F)}T
\end{equation}
状態密度が鋭く変化している(D'(εF)が大きい)ほど大きなゼーベック係数を持つことが分かります。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR KKR ゼーベック係数 状態密度 分散関係 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度常微分方程式モンテカルロ解析odeトランジスタインターフェースDOSPDS5022スイッチング回路定電流半導体分散関係シェルスクリプト乱数レベルシフトHP6632A可変抵抗温度解析トランジスタ技術ブレッドボードR6452AI2C確率論セミナー数値積分反強磁性バンドギャップ熱設計非線形方程式ソルバ絶縁バンド構造偏微分方程式三端子レギュレータフォトカプラカオスマフィンティン半径ISO-I2CGW近似LM358A/DコンバータシュミットトリガLEDUSB数値微分サーボアナログスイッチ補間発振回路カレントミラー直流動作点解析TL43174HC4053PC817C単振り子FFTVESTA開発環境bzqlty電子負荷量子力学基本並進ベクトルパラメトリック解析標準ロジックチョッパアンプBSchLDAアセンブラブラべ格子2ちゃんねるイジング模型PWscf状態方程式仮想結晶近似キュリー温度Quantum_ESPRESSO熱伝導VCAスイッチト・キャパシタewidth最適化QSGWTLP621GGASMPMaxima失敗談位相図六方最密充填構造繰り返しスピン軌道相互作用相対論ランダムウォークFETgfortranコバルトスレーターポーリング曲線ラプラス方程式抵抗cygwin不規則合金格子比熱熱力学マントル条件分岐MCU井戸型ポテンシャルダイヤモンドQNAPUPS固有値問題シュレディンガー方程式自動計測ガイガー管詰め回路OpenMPTLP521ハーフメタルLM555ubuntufsolveブラウン運動平均場近似NE555ZnOTLP552QuantumESPRESSOxcrysdenCIF最小値最大値awkフェルミ面テスタ第一原理計算Ubuntu差し込みグラフFXA-7020ZR三角波過渡解析Writer509データロガースーパーセル起電力CK1026AACircuitMAS830LフィルタMBEP-10PGAトランスナイキスト線図ノコギリ波負帰還安定性EAGLEOPA2277PIC16F785CapSenseLMC6622SC1815入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分SIC不純物問題ゼーベック係数cif2cellPWgui擬ポテンシャル二相共存ウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列状態図陰解法熱拡散方程式HiLAPW両対数グラフCrank-Nicolson法連立一次方程式specx.fifort境界条件片対数グラフグラフの分割円周率ヒストグラム不規則局所モーメントGimpシンボル軸ラベル凡例線種トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ