AkaiKKRで磁鉄鉱

AkaiKKR(machikaneyama)でスピネル型の結晶構造を持つ磁鉄鉱(マグネタイト)Fe3O4の計算を行いました。この計算はYanase and Siratori (1984, J. Phys. Soc. Jpn)で報告されている通り、基底状態ではハーフメタリックな強磁性体になります。(ハーフメタルに関してはAkaiKKRでハーフメタルを参照。)

fccMagnetitie-dos.png
Fig.1: 磁鉄鉱の状態密度。基底状態ではハーフメタルになる。


入力ファイル


磁鉄鉱の結晶構造は以下のように図示できます。

2017y09m18d_154337081.png
Fig.2: 磁鉄鉱の結晶構造


一見すると複雑な結晶構造ですが、fcc格子を持つと考えると計算セルの中の原子の数は14個まで減ります。鉄のAサイトの位置は ±(1/8, 1/8, 1/8) で、Bサイトの位置は (0, 0, 1/2), (1/4, 0, 3/4), (0, 1/4, 3/4), (1/4, 3/4, 0) です。酸素のサイトは ±(-u, u±1/4, -u), ±(-u, -u, u±1/4) で磁鉄鉱の場合 u=0.0048 です。結局、入力ファイルは以下のようになります。

c------------------------------------------------------------
go data/fccMagnetite
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 15.87 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 0.9 sra mjw mag 2nd
c 0.001 1.2 sra mjw mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 200 0.035
c------------------------------------------------------------
c ntyp
3
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Fe1 1 1 0.0 2
26 100
Fe2 1 1 0.0 2
26 100
O 1 1 0.0 2
8 100
c------------------------------------------------------------
c natm
14
c------------------------------------------------------------
c atmicx atmtyp
1/8 1/8 1/8 Fe1
-1/8 -1/8 -1/8 Fe1
0 0 1/2 Fe2
1/4 0 3/4 Fe2
0 1/4 3/4 Fe2
1/4 3/4 0 Fe2
0.2548 0.2548 0.2548 O
-0.2548 -0.2548 -0.2548 O
0.2548 -0.0048 -0.0048 O
-0.2548 0.0048 0.0048 O
-0.0048 0.2548 -0.0048 O
0.0048 -0.2548 0.0048 O
-0.0048 -0.0048 0.2548 O
0.0048 0.0048 -0.2548 O
c------------------------------------------------------------


バンド構造


以下にブロッホスペクトル関数(バンド構造)を示します。バンド構造から見てもハーフメタルになっていることが分かります。

Magnetite-up.png
Magnetite-dn.png
Fig.3-4: バンド構造


関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama KKR 強磁性 ハーフメタル 状態密度 分散関係 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式odeトランジスタインターフェースDOSPDS5022定電流スイッチング回路確率論半導体分散関係シェルスクリプト乱数レベルシフトHP6632Aトランジスタ技術温度解析可変抵抗I2CブレッドボードR6452A反強磁性数値積分バンド構造バンドギャップセミナー絶縁偏微分方程式非線形方程式ソルバPWscf熱設計シュミットトリガLED三端子レギュレータ順列・組み合わせLM358GW近似カオスマフィンティン半径ISO-I2CフォトカプラA/Dコンバータ発振回路74HC4053数値微分直流動作点解析サーボPC817CアナログスイッチUSB補間TL431カレントミラーbzqltyVESTA電子負荷イジング模型LDA開発環境ブラべ格子FFT量子力学2ちゃんねるチョッパアンプ単振り子ポケモンGOスーパーリーグ標準ロジックQuantumESPRESSO基本並進ベクトルパラメトリック解析アセンブラBSchトレーナーバトル抵抗Maximaラプラス方程式失敗談状態方程式SMPキュリー温度スイッチト・キャパシタ位相図繰り返し熱伝導gfortranコバルトewidthTLP621不規則合金ランダムウォーク六方最密充填構造FET最適化相対論スピン軌道相互作用QSGWQuantum_ESPRESSOGGAVCA仮想結晶近似スレーターポーリング曲線cygwinZnOシュレディンガー方程式フォノンNE555詰め回路条件分岐固有値問題最大値ダイヤモンドガイガー管TLP552マントル自動計測データロガーQNAPUPSCIF井戸型ポテンシャルMCUxcrysdenゼーベック係数格子比熱最小値LM555フェルミ面fsolve過渡解析差し込みグラフ三角波起電力スーパーセル第一原理計算ブラウン運動FXA-7020ZROpenMPTLP521Ubuntuハーフメタル熱力学Writer509ubuntu平均場近似テスタawkLMC662フィルタMAS830LCK1026トランスPIC16F785AACircuit負帰還安定性ハイパーリーグCapSenseナイキスト線図ノコギリ波2SC1815EAGLEPvPP-10OPA2277MBEPGA入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分不純物問題擬ポテンシャル状態図cif2cellPWguiSIC二相共存リジッドバンド模型edeltquantumESPRESSOスワップ領域ルチル構造ウルツ鉱構造BaO岩塩構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列不規則局所モーメント陰解法熱拡散方程式HiLAPWCrank-Nicolson法連立一次方程式specx.fifort境界条件両対数グラフ片対数グラフGimp円周率ヒストグラムシンボル線種グラフの分割軸ラベル凡例トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ