スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。


AkaiKKRのMT球の充填率 その1

AkaiKKR(machikaneyama)は、マフィンティン球近似(MT近似)を利用しています。このマフィンティン球の半径をどのような値に採るのがよいのかは、よく議論になります。今回は、面心立方構造(fcc)の銅とニッケル、体心立方構造(bcc)の鉄についてマフィンティン半径を変化させながら全エネルギーを計算してみました。


タッチング半径


プリミティブセルに1個だけしか原子を持たないfccやbccの場合、マフィンティン半径を出来るだけ大きく取る方がよい結果になるといわれています。格子定数 a に対して、面心立方構造の最近接原子間距離は $\sqrt{2}a/2$ となります。よってMT球のタッチング半径は、最近接原子間距離の半分で以下のようになります。

\begin{equation*}
r_{MT,fcc} = \frac{\sqrt{2}}{4} a \simeq 0.3535534 a
\end{equation*}

同様に、体心立方構造の場合の最近接原子間距離が $\sqrt{3}a/2$ なので、タッチング半径は以下のようになります。

\begin{equation*}
r_{MT,bcc} = \frac{\sqrt{3}}{4} a \simeq 0.4330127 a
\end{equation*}

タッチング半径を 1 としたときに、実際のMT半径を小さくしていったときに全エネルギーがどのように変化するかを計算します。

計算手法


template/を作成して、以下のような入力ファイルのテンプレートを置きます。

c------------------------------------------------------------
go data/Cu_RMT
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.83 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.2 sra pbe nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 200 0.01
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Cu 1 RMT 0.0 2
29 100
c------------------------------------------------------------
c natm
1
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Cu
c------------------------------------------------------------


このテンプレートでは、マフィンティン半径の部分が RMT という文字列にされているので、この文字列を置き換えながら第一原理計算を行うようなシェルスクリプトを用意します。

#!/bin/csh -f

## *** 実行ファイル ***
#setenv GFORTRAN_UNBUFFERED_ALL=y
#set EXEC="~/kkr/20170222/cpa2002v009c/specx"
set EXEC="specx"

## *** プロジェクト名 ***
set PREFIX="Cu"

## *** タッチング半径に対するMT半径の比 ***
set RATIO_LIST=( 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.90 0.89 0.88 0.87 0.86 0.85 0.84 0.83 0.82 0.81 0.80 )

## *** ポテンシャルの再利用フラグ ***
## (0: 利用しない, 1: 利用する)
set POTCOPY=0

## *** 計算結果の出力先 ***
set ANALYSIS="./analysis/${PREFIX}.txt"
if ( -e ${ANALYSIS} ) then
cat ${ANALYSIS} >> ${ANALYSIS}.back
endif
echo "MT_ratio Filling(%) Total_energy(Ry)" > ${ANALYSIS}

## *** 繰り返し計算 ***
foreach RATIO ( ${RATIO_LIST} )
## fcc
set RMT=`echo "${RATIO}*sqrt(2)/4" | bc -l | sed -e 's/^\./0./g'`
## bcc
#set RMT=`echo "${RATIO}*sqrt(3)/4" | bc -l | sed -e 's/^\./0./g'`

## *** ファイル名 ***
set TEMPLATE="./template/${PREFIX}_Template.in"
set KKRINP="./in/${PREFIX}_${RATIO}.in"
set KKROUT="./out/${PREFIX}_${RATIO}.out"
set POTFILE="./data/${PREFIX}_${RATIO}"
set POTBACK="./data/${PREFIX}"

## 前回のポテンシャルが存在すれば利用
if (( -e ${POTBACK} ) && ( ${POTCOPY} == 1 )) then
cp ${POTBACK} ${POTFILE}
endif

## *** 入力ファイルの作成 ***
sed 's/'RMT'/'${RMT}'/g' ${TEMPLATE} > ${KKRINP}

## *** 第一原理計算の実行 ***
## 最大計算回数
set nummax=5
## 計算回数の初期化
set num=0
## 最初の第一原理計算
${EXEC} < ${KKRINP} > ${KKROUT}
## *** 繰り返し計算 ***
while ( ( ! { grep -q "err= -6." ${KKROUT} } ) && ( $num < $nummax ) )
${EXEC} < ${KKRINP} > ${KKROUT}
@ num++
end

## 前回のポテンシャルが存在すればバックアップ
if ( ${POTCOPY} == 1 ) then
cp ${POTFILE} ${POTBACK}
endif

## *** 結果の出力 ***
set ENE=`grep "total energy" ${KKROUT} | sed -e s/total//g -e s/energy=//g`
set FIL=`grep "volume filling=" ${KKROUT} | sed -e s/volume//g -e s/filling=//g -e s/%//g`
echo ${RATIO} ${FIL} ${ENE} >> ${ANALYSIS}
end


計算結果


Cu_2017122303463390d.png
Fig.1: 銅の計算結果


Ni.png

Fig.2: ニッケルの計算結果


Fe.png
Fig.3: 鉄の計算結果


とりあえず、いずれの場合もMT球の半径が大きくなるほど全エネルギーが低くなることが分かります。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama KKR 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度常微分方程式モンテカルロ解析odeトランジスタインターフェースDOS定電流PDS5022スイッチング回路半導体分散関係シェルスクリプトレベルシフト乱数HP6632A可変抵抗I2Cトランジスタ技術温度解析R6452Aブレッドボード数値積分確率論バンド構造バンドギャップセミナー反強磁性絶縁熱設計偏微分方程式非線形方程式ソルバA/Dコンバータフォトカプラカオス三端子レギュレータISO-I2CPWscfLM358GW近似シュミットトリガLEDマフィンティン半径数値微分サーボ発振回路TL431直流動作点解析USBカレントミラー補間PC817Cアナログスイッチ74HC4053VESTAbzqlty電子負荷イジング模型アセンブラQuantumESPRESSOLDAチョッパアンプBSch開発環境単振り子量子力学2ちゃんねるFFT基本並進ベクトル標準ロジックブラべ格子パラメトリック解析位相図キュリー温度ラプラス方程式繰り返し抵抗熱伝導スイッチト・キャパシタ状態方程式MaximaSMP失敗談gfortran六方最密充填構造コバルトTLP621不規則合金スピン軌道相互作用ランダムウォーク最適化ewidth相対論FETQSGWスレーターポーリング曲線VCA仮想結晶近似GGAcygwinQuantum_ESPRESSO条件分岐詰め回路NE555LM555固有値問題最小値ガイガー管QNAPUPSダイヤモンドマントルデータロガーゼーベック係数TLP552シュレディンガー方程式ZnO最大値CIF格子比熱xcrysdenMCUハーフメタル井戸型ポテンシャル三角波ブラウン運動フェルミ面awk差し込みグラフスーパーセルFXA-7020ZR過渡解析起電力fsolveOpenMPUbuntuWriter509テスタ熱力学第一原理計算TLP521ubuntu平均場近似自動計測CK1026MAS830LトランスPIC16F785フィルタAACircuitCapSense負帰還安定性ノコギリ波ナイキスト線図EAGLE2SC1815P-10PGAOPA2277MBELMC662入出力FSMTeX結晶磁気異方性非線型方程式ソルバ固定スピンモーメント全エネルギーmultiplotgnuplotc/aL10構造fcc等高線ジバニャン方程式ヒストグラム確率論正規分布初期値面心立方構造ウィグナーザイツ胞interp1合金半金属電荷密度重積分SIC二相共存磁気モーメント不純物問題cif2cellPWgui擬ポテンシャルウルツ鉱構造BaOquantumESPRESSOフォノンデバイ模型edeltリジッドバンド模型岩塩構造ルチル構造スワップ領域マテリアルデザインspecx.fフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列状態図熱拡散方程式HiLAPW両対数グラフ陰解法Crank-Nicolson法ifort境界条件連立一次方程式片対数グラフグラフの分割円周率ヒストグラム不規則局所モーメントGimpシンボル軸ラベル凡例線種トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。