AkaiKKRのMT球の充填率 その1

AkaiKKR(machikaneyama)は、マフィンティン球近似(MT近似)を利用しています。このマフィンティン球の半径をどのような値に採るのがよいのかは、よく議論になります。今回は、面心立方構造(fcc)の銅とニッケル、体心立方構造(bcc)の鉄についてマフィンティン半径を変化させながら全エネルギーを計算してみました。


タッチング半径


プリミティブセルに1個だけしか原子を持たないfccやbccの場合、マフィンティン半径を出来るだけ大きく取る方がよい結果になるといわれています。格子定数 a に対して、面心立方構造の最近接原子間距離は $\sqrt{2}a/2$ となります。よってMT球のタッチング半径は、最近接原子間距離の半分で以下のようになります。

\begin{equation*}
r_{MT,fcc} = \frac{\sqrt{2}}{4} a \simeq 0.3535534 a
\end{equation*}

同様に、体心立方構造の場合の最近接原子間距離が $\sqrt{3}a/2$ なので、タッチング半径は以下のようになります。

\begin{equation*}
r_{MT,bcc} = \frac{\sqrt{3}}{4} a \simeq 0.4330127 a
\end{equation*}

タッチング半径を 1 としたときに、実際のMT半径を小さくしていったときに全エネルギーがどのように変化するかを計算します。

計算手法


template/を作成して、以下のような入力ファイルのテンプレートを置きます。

c------------------------------------------------------------
go data/Cu_RMT
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.83 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.2 sra pbe nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 200 0.01
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Cu 1 RMT 0.0 2
29 100
c------------------------------------------------------------
c natm
1
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Cu
c------------------------------------------------------------


このテンプレートでは、マフィンティン半径の部分が RMT という文字列にされているので、この文字列を置き換えながら第一原理計算を行うようなシェルスクリプトを用意します。

#!/bin/csh -f

## *** 実行ファイル ***
#setenv GFORTRAN_UNBUFFERED_ALL=y
#set EXEC="~/kkr/20170222/cpa2002v009c/specx"
set EXEC="specx"

## *** プロジェクト名 ***
set PREFIX="Cu"

## *** タッチング半径に対するMT半径の比 ***
set RATIO_LIST=( 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.90 0.89 0.88 0.87 0.86 0.85 0.84 0.83 0.82 0.81 0.80 )

## *** ポテンシャルの再利用フラグ ***
## (0: 利用しない, 1: 利用する)
set POTCOPY=0

## *** 計算結果の出力先 ***
set ANALYSIS="./analysis/${PREFIX}.txt"
if ( -e ${ANALYSIS} ) then
cat ${ANALYSIS} >> ${ANALYSIS}.back
endif
echo "MT_ratio Filling(%) Total_energy(Ry)" > ${ANALYSIS}

## *** 繰り返し計算 ***
foreach RATIO ( ${RATIO_LIST} )
## fcc
set RMT=`echo "${RATIO}*sqrt(2)/4" | bc -l | sed -e 's/^\./0./g'`
## bcc
#set RMT=`echo "${RATIO}*sqrt(3)/4" | bc -l | sed -e 's/^\./0./g'`

## *** ファイル名 ***
set TEMPLATE="./template/${PREFIX}_Template.in"
set KKRINP="./in/${PREFIX}_${RATIO}.in"
set KKROUT="./out/${PREFIX}_${RATIO}.out"
set POTFILE="./data/${PREFIX}_${RATIO}"
set POTBACK="./data/${PREFIX}"

## 前回のポテンシャルが存在すれば利用
if (( -e ${POTBACK} ) && ( ${POTCOPY} == 1 )) then
cp ${POTBACK} ${POTFILE}
endif

## *** 入力ファイルの作成 ***
sed 's/'RMT'/'${RMT}'/g' ${TEMPLATE} > ${KKRINP}

## *** 第一原理計算の実行 ***
## 最大計算回数
set nummax=5
## 計算回数の初期化
set num=0
## 最初の第一原理計算
${EXEC} < ${KKRINP} > ${KKROUT}
## *** 繰り返し計算 ***
while ( ( ! { grep -q "err= -6." ${KKROUT} } ) && ( $num < $nummax ) )
${EXEC} < ${KKRINP} > ${KKROUT}
@ num++
end

## 前回のポテンシャルが存在すればバックアップ
if ( ${POTCOPY} == 1 ) then
cp ${POTFILE} ${POTBACK}
endif

## *** 結果の出力 ***
set ENE=`grep "total energy" ${KKROUT} | sed -e s/total//g -e s/energy=//g`
set FIL=`grep "volume filling=" ${KKROUT} | sed -e s/volume//g -e s/filling=//g -e s/%//g`
echo ${RATIO} ${FIL} ${ENE} >> ${ANALYSIS}
end


計算結果


Cu_2017122303463390d.png
Fig.1: 銅の計算結果


Ni.png

Fig.2: ニッケルの計算結果


Fe.png
Fig.3: 鉄の計算結果


とりあえず、いずれの場合もMT球の半径が大きくなるほど全エネルギーが低くなることが分かります。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama KKR 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj常微分方程式モンテカルロ解析状態密度トランジスタodeDOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト分散関係レベルシフト乱数HP6632AR6452A可変抵抗トランジスタ技術温度解析ブレッドボードI2C反強磁性確率論数値積分セミナーバンドギャップバンド構造偏微分方程式非線形方程式ソルバ熱設計絶縁ISO-I2Cカオス三端子レギュレータLM358GW近似マフィンティン半径A/DコンバータフォトカプラシュミットトリガLEDPC817C発振回路数値微分直流動作点解析サーボカレントミラーTL431アナログスイッチUSB74HC4053bzqltyVESTA補間電子負荷アセンブライジング模型BSch量子力学単振り子2ちゃんねるチョッパアンプLDA開発環境基本並進ベクトルFFT標準ロジックブラべ格子パラメトリック解析抵抗SMPMaxima失敗談ラプラス方程式繰り返し位相図スイッチト・キャパシタ熱伝導状態方程式キュリー温度gfortranコバルトTLP621不規則合金Quantum_ESPRESSO六方最密充填構造ランダムウォーク相対論ewidthスピン軌道相互作用FETQSGWVCAcygwinスレーターポーリング曲線GGA仮想結晶近似PWscfシュレディンガー方程式LM555ハーフメタル固有値問題NE555最小値ガイガー管QNAPUPS自動計測ダイヤモンドマントルTLP552格子比熱最適化MCU井戸型ポテンシャル最大値xcrysdenCIF条件分岐詰め回路フェルミ面差し込みグラフスーパーセルfsolveブラウン運動awk過渡解析起電力三角波第一原理計算FXA-7020ZRWriter509Ubuntuテスタ熱力学データロガーTLP521OpenMPubuntu平均場近似MAS830LトランスCK1026PIC16F785PGA2SC1815EAGLEノコギリ波負帰還安定性ナイキスト線図MBEOPA2277P-10フィルタCapSenseAACircuitLMC662文字列固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型電荷密度重積分SIC二相共存磁気モーメント不純物問題PWgui擬ポテンシャルゼーベック係数ZnOウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデルcif2cell入出力陰解法熱拡散方程式HiLAPW両対数グラフCrank-Nicolson法連立一次方程式specx.fifort境界条件片対数グラフグラフの分割円周率ヒストグラム不規則局所モーメントGimpシンボル軸ラベル凡例線種トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ