AkaiKKRで最急降下法

擬ポテンシャル法を用いた第一原理計算パッケージは、多くの場合、結晶構造の最適化機能を持っています。しかしAkaiKKRにはそのような機能はありません。そこで、最急降下法を用いて全エネルギーが最小となる結晶構造を探してみました。
対象として選んだのは六方最密充填構造(hcp)のコバルトです。

steepest.png
Fig.1: 全エネルギーのカラーマップと最急降下法探索による全エネルギー最小化



結晶構造の最適化


多くの第一原理計算パッケージには、結晶構造の最適化機能があります。これは多くの場合、原子にかかる力を計算して、その方向に原子を動かすことによって実現されています。しかしながらAkaiKKR(machikaneyama)では原子にかかる力の計算が出来ません。AkaiKKRでも、全エネルギーが最小になるようにすることで結晶構造の最適化が出来るはずですが、手動ですべてのパラメータの探索を行うのは大変です。そこで最急降下法を使って全エネルギーが最小になる構造を探して見ます。
Scilabで最急降下法 その1Scilabで最急降下法 その2では、簡単な関数f(x,y)に対して、最小値を探すことで最急降下法のアルゴリズムを確認しました。今回は f(x,y)の代わりに第一原理計算を行います。今回はテスト計算として六方最密充填構造(hcp)のコバルトの計算をします。具体的には以下の3つのステップを行います。
  1. マフィンティン半径の決定
  2. エネルギーマップの作成
  3. 最急降下法計算


マフィンティン半径の決定


AkaiKKRで全エネルギーを比較するときは、色々な計算条件が変化しないようにする必要があります。特にマフィンティン半径の設定には注意が必要です。AkaiKKRの入力ファイルでは、マフィンティン半径は格子定数 a で規格化されます。私の理解では「AkaiKKRでマフィンティン半径を固定する」というのは「原子の位置や計算セルのサイズを変更したときに、計算セルの体積に対する各マフィンティン球の体積の比が変化しないようにする」ということです。(これは他の計算手法、例えばAPW法などとは違うことに注意が必要です。)この条件を満たす範囲でマフィンティン半径を最大になるようにするのが最良であると理解しています。(AkaiKKRでBain機構 その1その2も参照。)

そこでまず、全エネルギー最小を探索する格子定数の範囲を決めます。次に、その範囲でrmt=1としたときの実際のマフィンティン球の体積比が一番小さくなってしまう条件を探します。この条件でのマフィンティン半径を全ての計算に用いれば、マフィンティン球が重なることなく、かつ、マフィンティン半径を固定することが出来ます。
決められたマフィンティン半径は、格子体積の1/3乗で規格化しておくのが後々の事を考えると便利なはずです。具体的には下記のようなシェルスクリプトを作成し、計算しました。1.60 ≦ c/a ≦ 1.70 の範囲では rMT/V1/3 = 0.439518 ぐらいのようです。
このスクリプトを走らせる際には、第一原理計算を収束させる必要はないので bzqlty=0maxitr=0としておきます。

#!/bin/csh -f
#setenv GFORTRAN_UNBUFFERED_ALL y

## *** パラメーター範囲 ***
set COA_LIST=( 1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 )
set OMEGA_LIST=( 160 158 156 154 152 150 148 146 144 142 140 )

# set COA_LIST=( 1.63 )
# set OMEGA_LIST=( 150 )

## *** マフィンティン半径の計算 ***
set OMEGA=${OMEGA_LIST[1]}
set COA0=`echo $COA_LIST[1]`
set A0=`echo "e((1/3)*l(2*${OMEGA}/(sqrt(3)*${COA0})))" | bc -l`
if (`echo "${COA0} > 2*sqrt(2)/sqrt(3)" | bc -l` == 1) then
set RMTB0=`echo "${A0}/2" | bc -l`
else
set RMTB0=`echo "${A0}*sqrt(1/3+(${COA0}^2)/4)/2" | bc -l`
endif
set COA1=`echo $COA_LIST[$#COA_LIST]`
set A1=`echo "e((1/3)*l(2*${OMEGA}/(sqrt(3)*${COA1})))" | bc -l`
if (`echo "${COA1} > 2*sqrt(2)/sqrt(3)" | bc -l` == 1) then
set RMTB1=`echo "${A1}/2" | bc -l`
else
set RMTB1=`echo "${A1}*sqrt(1/3+(${COA1}^2)/4)/2" | bc -l`
endif
if (`echo "${RMTB0} < ${RMTB1}" | bc -l` == 1) then
set RMTB=`echo $RMTB0`
else
set RMTB=`echo $RMTB1`
endif
set RMTOMEGA=`echo "${RMTB}/e((1/3)*l(${OMEGA}))" | bc -l | sed -e 's/^\./0./g'`
echo ${RMTOMEGA}


なおhcp構造の場合はAkaiKKRでコバルトのc/a その2の方法でマフィンティン半径を決めることが出来るのですが、今回は将来的により複雑な構造をやることも考えてこのようにしました。

エネルギーマップの作成


必要ないはずの手順ですが、今回は最急降下法のテストでもあるので、考える体積・軸比の範囲の全ての全エネルギーを計算しておきます。この結果がFig.1のカラーコンターです。

Cシェルスクリプトには関数を実装することが出来ませんが、下請けのシェルスクリプトに変数を渡すことによって、それっぽい事は出来ます。
今回は という下請けのスクリプトを作成しました。これは、体積・軸比・マフィンティン半径の3つを引数として受け取り、第一原理計算を行って全エネルギーを返り値にします。

#!/bin/csh -f
##setenv GFORTRAN_UNBUFFERED_ALL y

## *** プロジェクト名 ***
set PROJECT="hcpCo"

## *** 実行ファイル ***
set EXEC="~/kkr/cpa2002v009c/specx"

## *** 標準入力から値を読み取る ***
## 格子体積
set OMEGA=$1
## c/a
set COA=$2
## RMT
set RMTOMEGA=$3

## ファイル名
set INFILE="in/${PROJECT}_go_${OMEGA}_${COA}.in"
set OUTFILE="out/${PROJECT}_go_${OMEGA}_${COA}.out"
set POTFILE="data/${PROJECT}_${OMEGA}_${COA}"
set POTBACK="data/${PROJECT}_${OMEGA}"

## 格子定数 a の計算
set ABOHR=`echo "scale=7; e((1/3)*l(2*${OMEGA}/(sqrt(3)*${COA})))" | bc -l | sed -e 's/^\./0./g'`
## マフィンティン半径の計算
set RMTA=`echo "scale=7; ${RMTOMEGA}*e((1/3)*l(${OMEGA}))/${ABOHR}" | bc -l | sed -e 's/^\./0./g'`

## テンプレートから入力ファイルを作成
sed 's/'OMEGA'/'${OMEGA}'/g' template/${PROJECT}_go_Template.in | sed 's/'ABOHR'/'${ABOHR}'/g' | sed 's/'COA'/'${COA}'/g' | sed 's/'RMTA'/'${RMTA}'/g' > ${INFILE}

## ポテンシャルファイルのコピー
if ( ! -e ${POTFILE} ) then
if ( -e ${POTBACK} ) then
cp ${POTBACK} ${POTFILE}
endif
endif

## 計算回数の初期化
set num=0
## 最大計算回数
set nummax=20
## 第一原理計算
${EXEC} < ${INFILE} > ${OUTFILE}
while ( ( ! { grep -q "err= -6." ${OUTFILE} } ) && ( $num < $nummax ) )
${EXEC} < ${INFILE} > ${OUTFILE}
@ num++
end

## ポテンシャルのバックアップ
cp ${POTFILE} ${POTBACK}

set ENE=`grep "total energy" ${OUTFILE} | sed -e s/total//g -e s/energy=//g`
echo ${ENE}


enemap.sh は下請けスクリプト dogo.sh を利用して 1.60 ≦ c/a ≦ 1.70, 140 ≦ V ≦ 160 の範囲で全エネルギーのマップを作ります。dogo.sh は最急降下法のシェルスクリプトでも利用します。

最急降下法


エネルギーのマップから最安定な格子定数が V = 150 Bohr3, c/a = 163 付近にあることが予想できます。とりあえず初期値を V = 156 Bohr3, c/a = 1.68 として計算してみます。その結果がFig.1上に白で示された経路です。最急降下法では、その関数の値の微分の方向に向かって次の入力パラメータを探します。今回の計算では、4回程度で格子定数の最適化が出来ている事が確認できます。

最急降下法のCシェルスクリプト steepest.sh は以下の通りです。

#!/bin/csh -f
#setenv GFORTRAN_UNBUFFERED_ALL y

## *** マフィンティン半径 ***
set RMTOMEGA=0.43951815598150528923

## *** 係数 ***
set KEISUU_OMEGA="10000.0"
set KEISUU_COA="0.5"

## *** 初期値 ***
set OMEGA=$1
set COA=$2

## *** 微分のステップ ***
set dOMEGA="1.0"
set dCOA="0.01"
set OMEGA_PLUS=`echo "${OMEGA}+${dOMEGA}" | bc -l`
set OMEGA_MINUS=`echo "${OMEGA}-${dOMEGA}" | bc -l`
set COA_PLUS=`echo "${COA}+${dCOA}" | bc -l`
set COA_MINUS=`echo "${COA}-${dCOA}" | bc -l`

## *** 第一原理計算 ***
set ENE=`./dogo.sh ${OMEGA} ${COA} ${RMTOMEGA}`
echo "Center energy:" ${ENE} "(Ry)"
set ENE_OMEGA_PLUS=`./dogo.sh ${OMEGA_PLUS} ${COA} ${RMTOMEGA}`
echo "Omega plus: " ${ENE_OMEGA_PLUS} "(Ry)"
set ENE_OMEGA_MINUS=`./dogo.sh ${OMEGA_MINUS} ${COA} ${RMTOMEGA}`
echo "Omega minus: " ${ENE_OMEGA_MINUS} "(Ry)"
set ENE_COA_PLUS=`./dogo.sh ${OMEGA} ${COA_PLUS} ${RMTOMEGA}`
echo "c/a plus: " ${ENE_COA_PLUS} "(Ry)"
set ENE_COA_MINUS=`./dogo.sh ${OMEGA} ${COA_MINUS} ${RMTOMEGA}`
echo "c/a minus: " ${ENE_COA_MINUS} "(Ry)"

## *** 数値微分(中心差分) ***
set dENEdOMEGA=`echo "(${ENE_OMEGA_PLUS}+(-1*${ENE_OMEGA_MINUS}))/(2*${dOMEGA})" | bc -l`
echo ${dENEdOMEGA}
set dENEdCOA=`echo "(${ENE_COA_PLUS}+(-1*${ENE_COA_MINUS}))/(2*${dCOA})" | bc -l`
echo ${dENEdCOA}

echo ${OMEGA} ${COA} ${ENE} >> analysis/steepest.txt

set OMEGA=`echo "scale=7; (${OMEGA}-${KEISUU_OMEGA}*${dENEdOMEGA})/1.0" | bc -l`
set COA=`echo "scale=7; (${COA}-${KEISUU_COA}*${dENEdCOA})/1.0" | bc -l`
echo "Next:"
echo "./steepest.sh" ${OMEGA} ${COA}


関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama Scilab KKR 強磁性 シェルスクリプト 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度常微分方程式モンテカルロ解析トランジスタodeDOSインターフェーススイッチング回路定電流PDS5022分散関係半導体シェルスクリプト乱数レベルシフトHP6632A温度解析ブレッドボード可変抵抗I2Cトランジスタ技術R6452A確率論バンド構造セミナーバンドギャップ反強磁性数値積分熱設計絶縁非線形方程式ソルバ偏微分方程式PWscfA/Dコンバータマフィンティン半径フォトカプラカオスISO-I2CGW近似LM358LEDシュミットトリガ三端子レギュレータ74HC4053アナログスイッチUSBサーボ数値微分直流動作点解析補間カレントミラーTL431PC817C発振回路FFT電子負荷VESTA開発環境量子力学単振り子bzqlty基本並進ベクトル2ちゃんねるチョッパアンプ標準ロジックパラメトリック解析アセンブラブラべ格子BSchQuantumESPRESSOイジング模型LDA状態方程式GGA仮想結晶近似VCA熱伝導SMPスイッチト・キャパシタキュリー温度Quantum_ESPRESSOスーパーリーグTLP621トレーナーバトルewidth最適化Maxima抵抗失敗談相対論コバルト繰り返し位相図六方最密充填構造ポケモンGOスピン軌道相互作用gfortranランダムウォークFETスレーターポーリング曲線cygwinQSGW不規則合金ラプラス方程式MCU条件分岐データロガーマントルUPS固有値問題格子比熱シュレディンガー方程式熱力学詰め回路ガイガー管QNAP井戸型ポテンシャルダイヤモンドOpenMPTLP521ハーフメタルLM555ubuntu平均場近似ブラウン運動フェルミ面NE555ZnOゼーベック係数TLP552xcrysdenCIF最小値最大値awkfsolveテスタ第一原理計算Ubuntu差し込みグラフFXA-7020ZR三角波過渡解析Writer509自動計測スーパーセル起電力トランスCK1026MAS830LフィルタPGAP-10MBEOPA2277ナイキスト線図ノコギリ波AACircuitEAGLE2SC1815PIC16F785LMC662CapSense負帰還安定性入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分SIC不純物問題擬ポテンシャル状態図cif2cellPWgui二相共存ウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列不規則局所モーメント陰解法熱拡散方程式HiLAPWCrank-Nicolson法連立一次方程式specx.fifort境界条件両対数グラフ片対数グラフGimp円周率ヒストグラムシンボル線種グラフの分割軸ラベル凡例トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ