Scilabで二重積分

Scilabを利用すると1変数の数値積分が簡単に計算できます。

\begin{equation}
\int_{x_0}^{x_1}f(x)\mathrm{d}x
\end{equation}

このブログでも数値積分タグにいくつかの例を見つけることができます。しかしながら、2変数の数値積分はこれまで行ってきませんでした。

\begin{equation}
\int\int f(x,y) \mathrm{d}x\mathrm{d}y
\end{equation}

Scilabには二重積分を計算することが可能な int2d が存在します。今回は高校数学の美しい物語で解析的に解かれている二重積分を数値的に計算してみます。


積分範囲が長方形領域の場合


積分範囲が長方形の領域の場合、すなわち以下のような式で表すことができる場合は、簡単に数値積分できます。

\begin{equation}
\int_{x_0}^{x_1}\int_{y_0}^{y_1}f(x,y)\mathrm{d}x\mathrm{d}y
\end{equation}

Scilabの int2d では長方形領域を2つの三角形のパッチワークとして与えます。
積分範囲を int2d に渡すために行列XとYを用意します。それぞれ2つの三角形の頂点のx座標とy座標を与えます。

\begin{equation}
X =
\begin{pmatrix}
x_{0} & x_{0} \\
x_{1} & x_{1} \\
x_{1} & x_{0} \\
\end{pmatrix},
Y =
\begin{pmatrix}
y_{0} & y_{0} \\
y_{0} & y_{1} \\
y_{1} & y_{1} \\
\end{pmatrix}
\end{equation}

001_20170423145553b2b.png
Fig.1: Scilabのint2dへの積分範囲の与え方


実際に以下の積分を計算して見ます。

\begin{equation}
\int_{0}^{\pi}\int_{0}^{R}x^4 \sin(y)\mathrm{d}x\mathrm{d}y
\end{equation}

clear;

r = 1;

// *** 積分する関数の定義 ***
function z = func(x,y)
z = (x .^ 4) * sin(y)
endfunction
// 積分範囲
x0 = 0; x1 = r;
y0 = 0; y1 = %pi;

// *** 二重積分 ***
X = [x0, x0;
x1, x1;
x1, x0];
Y = [y0, y0;
y0, y1;
y1, y1];
// 数値解
I = int2d(X, Y, func)
// 解析解
A = 2*(r^5)/5


数値化解と解析解が同じ値になることが確認できます。

積分範囲が三角形の組み合わせで表せる場合


積分範囲が長方形の場合は2つの三角形の組み合わせで表現されますが、より複雑な形状の場合も任意の個数の三角形の組み合わせで表現できるはずです。今回は逆に簡単になってしまいますが、1個の三角形で表現できる例を計算します。

\begin{equation}
\int \int_D xy^2 \mathrm{d}x\mathrm{y}
\end{equation}

jusekibun.png
Fig.2: 積分領域Dが三角形ひとつ分の例


積分領域が三角形ひとつ分なので、与える行列は3行1列になります。

\begin{equation}
X =
\begin{pmatrix}
x_{0} \\
x_{1} \\
x_{1} \\
\end{pmatrix},
Y =
\begin{pmatrix}
y_{1} \\
y_{0} \\
y_{1} \\
\end{pmatrix}
\end{equation}

この計算を行うScilabスクリプトは以下のようになります。

clear;

// *** 積分する関数の定義 ***
function z = func(x,y)
z = x .* (y .^ 2)
endfunction

// *** 二重積分 ***
X = [0;
1;
1];
Y = [1;
0;
1];
// 数値解
I = int2d(X, Y, func)
// 解析解
A = 3/20


このスクリプトも数値解と解析解が同じに値になることが分かります。

同様にしてN個の三角形の組み合わせで表現される積分範囲の場合3行N列の行列で指定することができます。

更に複雑な積分領域の場合


どんなに複雑な積分領域の形状であっても三角形のパッチワークで表現できるはずですが、現実的には大変です。そこでOctaveの精義―フリーの高機能数値計算ツールを使いこなすで紹介されている方法を試してみましたが、現状うまく行っていません。上手く行っていませんがとりあえず方法だけは紹介します。
具体的にはScilabの論理演算で条件分岐の考え方を使って積分領域外では値がゼロになるように被積分関数の定義を行います。

\begin{equation}
\int\int_D -\frac{1}{(2x + y + 1)^2}\mathrm{d}x\mathrm{d}y
\end{equation}

jusekibun2.png
Fig.3: 複雑な積分領域の例


clear;

// *** 積分する関数の定義 ***
function z = func(x,y)
region = y >= x .^ 2
z = - 1 ./ ((2 * x + y + 1) .^ 2) .* region
endfunction

// *** 二重積分 ***
X = [0;
1;
1];
Y = [0;
0;
1];
// 数値解
I = int2d(X, Y, func)
// 解析解
A = (1/3) * log(4) - 1/2


原理的にはこのスクリプトでよいはずですが、実際には正しく計算してくれません。Scilab 6.0ではエラーで停止します。Scilab 5.5.2ではそれっぽい値を返しますが、解析解の値とはかなりずれた値となっており、不正確です。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 数値積分 重積分 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCCPAOPアンプPIC強磁性モンテカルロ解析常微分方程式トランジスタodeインターフェース状態密度DOSecalj定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフトHP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ