AkaiKKRで点欠陥の形成エネルギー(未完)

Wang et al. (2004) (PDF)を参考に、AkaiKKR (machikaneyama)を用いて面心立方構造(fcc)のアルミニウムの点欠陥の生成エネルギーをスーパーセル法を用いて計算しました。
結果は、Wang et al. (2004) (PDF)の計算結果に対して、一桁程度の過大評価となってしまいました。


点欠陥の形成エネルギー


結晶中に点欠陥を作るために必要な欠陥の形成エネルギーは、スーパーセル法を用いた第一原理計算から計算することができます。
具体的には、まず、スーパーセルで完全結晶の全エネルギーを計算します(E0)。次にスーパーセルから1つの原子を取り除いた系の計算を行い、全エネルギー(E1)を求めます。スーパーセルの原子数がN個のとき、欠陥形成エネルギーは、以下の式から求めることができます(参考: Wang et al. (2004) (PDF))。
\begin{equation}
\Delta E_{f} = E_{1} - \frac{N-1}{N} E_{0}
\end{equation}

同様の計算は、スーパーセルではなくコヒーレントポテンシャル近似(CPA)でもできる可能性はあるのでしょうか?このような質問がAkaiKKR (machikaneyama)の掲示板に投稿されて・・・いましたが、現在は存在していないようです(#6678)。質問者の計算は、うまく行っておらず、形成エネルギーが一桁程度過大評価されているようです。

そこで今回は、AkaiKKR (machikaneyama)でもスーパーセル法を用いて点欠陥の形成エネルギーを計算してみます。

計算手法


Wang et al. (2004) (PDF)では、面心立方構造(fcc)のアルミニウムとニッケル、体心立方構造(bcc)のモリブデンとタンタルの点欠陥の形成エネルギーの計算が行われています。今回は、この中で面心立方構造のアルミニウムに関して計算を行います。スーパーセルのサイズは 2*2*2=32 原子としました。
Wang et al. (2004) (PDF)によると、交換相関汎関数はGGAよりもLDAのほうが良いであるとか、構造緩和はしないほうがむしろ良いだとか、色々議論があるようです。とりあえず今回は、LDA(mjw)で構造緩和もしない(というか大変なのでやりたくない)という方針で行きます。

c--------------------Al--------------------------------------
go data/SuperAlVc
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
sc 15.3 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 200 0.035
c------------------------------------------------------------
c ntyp
32
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Al1 1 1 0.0 2 0 100
Al2 1 1 0.0 2 13 100
Al3 1 1 0.0 2 13 100
Al4 1 1 0.0 2 13 100
Al5 1 1 0.0 2 13 100
Al6 1 1 0.0 2 13 100
Al7 1 1 0.0 2 13 100
Al8 1 1 0.0 2 13 100
Al9 1 1 0.0 2 13 100
Al10 1 1 0.0 2 13 100
Al11 1 1 0.0 2 13 100
Al12 1 1 0.0 2 13 100
Al13 1 1 0.0 2 13 100
Al14 1 1 0.0 2 13 100
Al15 1 1 0.0 2 13 100
Al16 1 1 0.0 2 13 100
Al17 1 1 0.0 2 13 100
Al18 1 1 0.0 2 13 100
Al19 1 1 0.0 2 13 100
Al20 1 1 0.0 2 13 100
Al21 1 1 0.0 2 13 100
Al22 1 1 0.0 2 13 100
Al23 1 1 0.0 2 13 100
Al24 1 1 0.0 2 13 100
Al25 1 1 0.0 2 13 100
Al26 1 1 0.0 2 13 100
Al27 1 1 0.0 2 13 100
Al28 1 1 0.0 2 13 100
Al29 1 1 0.0 2 13 100
Al30 1 1 0.0 2 13 100
Al31 1 1 0.0 2 13 100
Al32 1 1 0.0 2 13 100
c------------------------------------------------------------
c natm
32
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Al1
1/4 1/4 0 Al2
1/4 0 1/4 Al3
0 1/4 1/4 Al4

1/2 0 0 Al5
3/4 1/4 0 Al6
3/4 0 1/4 Al7
1/2 1/4 1/4 Al8

0 1/2 0 Al9
1/4 3/4 0 Al10
1/4 1/2 1/4 Al11
0 3/4 1/4 Al12

0 0 1/2 Al13
1/4 1/4 1/2 Al14
1/4 0 3/4 Al15
0 1/4 3/4 Al16

1/2 1/2 0 Al17
3/4 3/4 0 Al18
3/4 1/2 1/4 Al19
1/2 3/4 1/4 Al20

1/2 0 1/2 Al21
3/4 1/4 1/2 Al22
3/4 0 3/4 Al23
1/2 1/4 3/4 Al24

0 1/2 1/2 Al25
1/4 3/4 1/2 Al26
1/4 1/2 3/4 Al27
0 3/4 3/4 Al28

1/2 1/2 1/2 Al29
3/4 3/4 1/2 Al30
3/4 1/2 3/4 Al31
1/2 3/4 3/4 Al32
c------------------------------------------------------------


AkaiKKRでスーパーセル その1で書いたとおり、AkaiKKRでスーパーセルの計算を行うためには、それに適したパラメータをspecx.fに設定して再コンパイルする必要があります。計算するコンピュータのメモリが少ない場合、スワップ領域を使う必要があるかもしれません。今回はAkaiKKRとUbuntu 12.04 のスワップ領域で指定した下記のパラーメータをspecx.fに設定しました。

     & (natmmx=32, ncmpmx=32, msizmx=288, mxlmx=3, nk1x=500, nk3x=701,


結果と議論


面心立方構造のアルミニウムの点欠陥の形成エネルギーを計算するために、計算セルの中に32個のアルミニウム原子を置いた完全結晶の全エネルギー(E0)とスーパーセルからひとつの原子を点欠陥に置き換えたスーパーセルの全エネルギー(E1)の計算を行いました。得られた全エネルギーは、以下のようになりました。

E0 = -15482.440171667 (Ry)
E1 = -14998.335584355 (Ry)

よって点欠陥の生成エネルギーは
ΔEf = 0.2783319 (Ry) = 3.786906 (eV)
となりました。

この値はWang et al. (2004) (PDF)で報告されている 0.568 (eV) @ N=31, 0.511 (eV) @ N=108 とくらべて一桁程度の過大評価となってしまいました。したがって、AkaiKKRのCPA計算で点欠陥の生成エネルギーを過大評価してしまうのは、必ずしもCPAの問題ではないかもしれません。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama KKR スーパーセル CPA 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPA強磁性PICモンテカルロ解析常微分方程式odeトランジスタecalj状態密度DOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析分散関係I2Cトランジスタ技術R6452A可変抵抗ブレッドボードセミナーバンドギャップ数値積分確率論反強磁性偏微分方程式バンド構造絶縁熱設計非線形方程式ソルバフォトカプラシュミットトリガLEDLM358カオスISO-I2C三端子レギュレータGW近似A/Dコンバータカレントミラーアナログスイッチ数値微分マフィンティン半径TL431発振回路サーボPC817CUSB直流動作点解析74HC4053補間FFTBSch開発環境パラメトリック解析2ちゃんねるチョッパアンプ量子力学bzqlty電子負荷イジング模型LDA標準ロジックアセンブラ基本並進ベクトルブラべ格子単振り子熱伝導位相図TLP621キュリー温度繰り返し状態方程式MaximaVESTAスイッチト・キャパシタ相対論FETランダムウォークスピン軌道相互作用SMP六方最密充填構造抵抗不規則合金ewidthスレーターポーリング曲線GGAラプラス方程式cygwingfortranQSGW失敗談コバルト条件分岐TLP521テスタLM555Writer509TLP552格子比熱マントルデータロガー自動計測詰め回路ガイガー管ダイヤモンドQNAPMCUFXA-7020ZR過渡解析三角波UPSNE555固有値問題熱力学ブラウン運動フェルミ面awk起電力第一原理計算OpenMPfsolveubuntu最大値xcrysden最小値最適化仮想結晶近似VCA差し込みグラフスーパーセル井戸型ポテンシャル平均場近似シュレディンガー方程式FSMフラクタルOPA2277固定スピンモーメント2SC1815全エネルギー合金multiplotgnuplotc/aTeX結晶磁気異方性interp1ウィグナーザイツ胞初期値マンデルブロ集合疎行列面心立方構造fcc不純物問題非線型方程式ソルバフィルタL10構造PGA半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度三次元CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタル正規分布フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt縮退キーボード軸ラベルグラフの分割凡例トラックボールPC不規則局所モーメント片対数グラフトランス両対数グラフCK1026MAS830L直流解析Excel円周率パラメータ・モデルヒストグラム日本語最小二乗法等価回路モデルGimp線種シンボルTS-110TS-112PIC16F785LMC662化学反応文字列specx.f入出力ifortマテリアルデザインヒストグラム確率論Realforce等高線ジバニャン方程式P-10Ubuntuナイキスト線図Crank-Nicolson法陰解法熱拡散方程式HiLAPWAACircuit連立一次方程式負帰還安定性境界条件EAGLEMBE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ