AkaiKKRで点欠陥の形成エネルギー(未完)

Wang et al. (2004) (PDF)を参考に、AkaiKKR (machikaneyama)を用いて面心立方構造(fcc)のアルミニウムの点欠陥の生成エネルギーをスーパーセル法を用いて計算しました。
結果は、Wang et al. (2004) (PDF)の計算結果に対して、一桁程度の過大評価となってしまいました。


点欠陥の形成エネルギー


結晶中に点欠陥を作るために必要な欠陥の形成エネルギーは、スーパーセル法を用いた第一原理計算から計算することができます。
具体的には、まず、スーパーセルで完全結晶の全エネルギーを計算します(E0)。次にスーパーセルから1つの原子を取り除いた系の計算を行い、全エネルギー(E1)を求めます。スーパーセルの原子数がN個のとき、欠陥形成エネルギーは、以下の式から求めることができます(参考: Wang et al. (2004) (PDF))。
\begin{equation}
\Delta E_{f} = E_{1} - \frac{N-1}{N} E_{0}
\end{equation}

同様の計算は、スーパーセルではなくコヒーレントポテンシャル近似(CPA)でもできる可能性はあるのでしょうか?このような質問がAkaiKKR (machikaneyama)の掲示板に投稿されて・・・いましたが、現在は存在していないようです(#6678)。質問者の計算は、うまく行っておらず、形成エネルギーが一桁程度過大評価されているようです。

そこで今回は、AkaiKKR (machikaneyama)でもスーパーセル法を用いて点欠陥の形成エネルギーを計算してみます。

計算手法


Wang et al. (2004) (PDF)では、面心立方構造(fcc)のアルミニウムとニッケル、体心立方構造(bcc)のモリブデンとタンタルの点欠陥の形成エネルギーの計算が行われています。今回は、この中で面心立方構造のアルミニウムに関して計算を行います。スーパーセルのサイズは 2*2*2=32 原子としました。
Wang et al. (2004) (PDF)によると、交換相関汎関数はGGAよりもLDAのほうが良いであるとか、構造緩和はしないほうがむしろ良いだとか、色々議論があるようです。とりあえず今回は、LDA(mjw)で構造緩和もしない(というか大変なのでやりたくない)という方針で行きます。

c--------------------Al--------------------------------------
go data/SuperAlVc
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
sc 15.3 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 200 0.035
c------------------------------------------------------------
c ntyp
32
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Al1 1 1 0.0 2 0 100
Al2 1 1 0.0 2 13 100
Al3 1 1 0.0 2 13 100
Al4 1 1 0.0 2 13 100
Al5 1 1 0.0 2 13 100
Al6 1 1 0.0 2 13 100
Al7 1 1 0.0 2 13 100
Al8 1 1 0.0 2 13 100
Al9 1 1 0.0 2 13 100
Al10 1 1 0.0 2 13 100
Al11 1 1 0.0 2 13 100
Al12 1 1 0.0 2 13 100
Al13 1 1 0.0 2 13 100
Al14 1 1 0.0 2 13 100
Al15 1 1 0.0 2 13 100
Al16 1 1 0.0 2 13 100
Al17 1 1 0.0 2 13 100
Al18 1 1 0.0 2 13 100
Al19 1 1 0.0 2 13 100
Al20 1 1 0.0 2 13 100
Al21 1 1 0.0 2 13 100
Al22 1 1 0.0 2 13 100
Al23 1 1 0.0 2 13 100
Al24 1 1 0.0 2 13 100
Al25 1 1 0.0 2 13 100
Al26 1 1 0.0 2 13 100
Al27 1 1 0.0 2 13 100
Al28 1 1 0.0 2 13 100
Al29 1 1 0.0 2 13 100
Al30 1 1 0.0 2 13 100
Al31 1 1 0.0 2 13 100
Al32 1 1 0.0 2 13 100
c------------------------------------------------------------
c natm
32
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Al1
1/4 1/4 0 Al2
1/4 0 1/4 Al3
0 1/4 1/4 Al4

1/2 0 0 Al5
3/4 1/4 0 Al6
3/4 0 1/4 Al7
1/2 1/4 1/4 Al8

0 1/2 0 Al9
1/4 3/4 0 Al10
1/4 1/2 1/4 Al11
0 3/4 1/4 Al12

0 0 1/2 Al13
1/4 1/4 1/2 Al14
1/4 0 3/4 Al15
0 1/4 3/4 Al16

1/2 1/2 0 Al17
3/4 3/4 0 Al18
3/4 1/2 1/4 Al19
1/2 3/4 1/4 Al20

1/2 0 1/2 Al21
3/4 1/4 1/2 Al22
3/4 0 3/4 Al23
1/2 1/4 3/4 Al24

0 1/2 1/2 Al25
1/4 3/4 1/2 Al26
1/4 1/2 3/4 Al27
0 3/4 3/4 Al28

1/2 1/2 1/2 Al29
3/4 3/4 1/2 Al30
3/4 1/2 3/4 Al31
1/2 3/4 3/4 Al32
c------------------------------------------------------------


AkaiKKRでスーパーセル その1で書いたとおり、AkaiKKRでスーパーセルの計算を行うためには、それに適したパラメータをspecx.fに設定して再コンパイルする必要があります。計算するコンピュータのメモリが少ない場合、スワップ領域を使う必要があるかもしれません。今回はAkaiKKRとUbuntu 12.04 のスワップ領域で指定した下記のパラーメータをspecx.fに設定しました。

     & (natmmx=32, ncmpmx=32, msizmx=288, mxlmx=3, nk1x=500, nk3x=701,


結果と議論


面心立方構造のアルミニウムの点欠陥の形成エネルギーを計算するために、計算セルの中に32個のアルミニウム原子を置いた完全結晶の全エネルギー(E0)とスーパーセルからひとつの原子を点欠陥に置き換えたスーパーセルの全エネルギー(E1)の計算を行いました。得られた全エネルギーは、以下のようになりました。

E0 = -15482.440171667 (Ry)
E1 = -14998.335584355 (Ry)

よって点欠陥の生成エネルギーは
ΔEf = 0.2783319 (Ry) = 3.786906 (eV)
となりました。

この値はWang et al. (2004) (PDF)で報告されている 0.568 (eV) @ N=31, 0.511 (eV) @ N=108 とくらべて一桁程度の過大評価となってしまいました。したがって、AkaiKKRのCPA計算で点欠陥の生成エネルギーを過大評価してしまうのは、必ずしもCPAの問題ではないかもしれません。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama KKR スーパーセル CPA 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性OPアンプPICCPAecaljモンテカルロ解析常微分方程式odeトランジスタ状態密度DOSインターフェース定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフト分散関係HP6632AI2C可変抵抗トランジスタ技術ブレッドボード温度解析R6452A反強磁性確率論バンドギャップセミナー数値積分熱設計非線形方程式ソルババンド構造絶縁偏微分方程式ISO-I2CLM358マフィンティン半径フォトカプラシュミットトリガカオスLED三端子レギュレータGW近似A/Dコンバータ発振回路PC817C直流動作点解析USBTL431数値微分アナログスイッチカレントミラー74HC4053サーボ量子力学単振り子チョッパアンプ補間2ちゃんねる開発環境bzqltyFFT電子負荷LDAイジング模型BSch基本並進ベクトルブラべ格子パラメトリック解析標準ロジックアセンブラ繰り返し六方最密充填構造SMPコバルトewidthFET仮想結晶近似QSGW不規則合金VCAMaximaGGA熱伝導cygwinスレーターポーリング曲線キュリー温度スイッチト・キャパシタ失敗談ランダムウォークgfortran抵抗相対論位相図スピン軌道相互作用VESTA状態方程式TLP621ラプラス方程式TLP552条件分岐NE555LM555TLP521マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測QNAPUPSWriter509ダイヤモンドデータロガー格子比熱熱力学起電力awkブラウン運動スーパーセルUbuntu差し込みグラフ第一原理計算フェルミ面fsolveCIFxcrysden最大値最小値ubuntu最適化平均場近似OpenMP井戸型ポテンシャル固有値問題シュレディンガー方程式TeX2SC1815結晶磁気異方性OPA2277フラクタルFSM固定スピンモーメントc/a非線型方程式ソルバgnuplot全エネルギーfcc初期値マンデルブロ集合縮退正規分布interp1ウィグナーザイツ胞L10構造multiplotフィルタ面心立方構造PGAハーフメタル二相共存ZnOウルツ鉱構造BaOSIC重積分磁気モーメント電荷密度化学反応クーロン散乱岩塩構造CapSenseノコギリ波デバイ模型キーボード半金属フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt合金Realforce軸ラベルグラフの分割凡例線種シンボルMAS830LCK1026LMC662PIC16F785トランス関数フィッティングトラックボールPC等価回路モデルヒストグラムパラメータ・モデル不規則局所モーメント最小二乗法TS-112TS-110直流解析ExcelGimp円周率片対数グラフ両対数グラフspecx.f疎行列三次元ifort文字列不純物問題P-10等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン入出力境界条件陰解法AACircuit熱拡散方程式HiLAPWMBEEAGLE連立一次方程式ナイキスト線図負帰還安定性Crank-Nicolson法日本語

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ