AkaiKKRでリジッドバンド模型もどき

AkaiKKR(machikaneyama)では、コヒーレントポテンシャル近似(CPA)で不純物の効果を計算することができます。不純物の効果に関して、CPAよりも荒い近似としてよく使われるのがリジッドバンド模型です。今回は、あえて、AkaiKKRの入力ファイルのパラメータのひとつの pmix=0 としてリジッドバンド模型のような計算をホウ素ドープダイヤモンドに関して行ってみました。

Rigidband.png
Fig.1: ダイヤモンドとリジッドバンド模型もどきで計算したホウ素ドープダイヤモンドの状態密度



ホウ素ドープダイヤモンド


AkaiKKRでB(N)-dopedダイヤモンドでは、コヒーレントポテンシャル近似を用いて、ホウ素ドープダイヤモンドと窒素ドープダイヤモンドの状態密度の計算を行いました。その結果、状態密度の形状はドープによってほとんど変わらないものの、価電子の数が変化するためフェルミ準位の位置が変わり、金属・半導体転移が起こることが確認できました。計算にはコヒーレントポテンシャル近似(CPA)を用いましたが、この結果はリジッドバンド模型でもよく近似ができそうだと分かりました。そこで今回は、ホウ素ドープダイヤモンドの状態密度をリジッドバンド模型(のようなもの)で計算して、CPAの結果と比較します。

リジッドバンド模型もどき


リジッドバンド模型は、単純に状態密度の形状が変わらず、ドープによりフェルミエネルギーの位置が変わるだけとする近似です。従って、通常通りに純粋なダイヤモンドの第一原理計算を行った後に、得られた状態密度と積分状態密度の数値データからScilab等を使って、ドープ後のフェルミエネルギーの位置を計算するのが普通です。

しかし今回は、(このような方法にメリットがあるかは別問題として)異なる方法でリジッドバンド模型のような計算を行ってみます。

CCMSハンズオン AkaiKKR講習会 2014年7月30日のYoutube動画2:21:28あたりから入力ファイルのpmix=0とした場合に、ポテンシャルが更新されず、チャージニュートラリティーがゼロになるようにフェルミ準位だけが移動すると説明されています。今回はこれを利用します。

5%ホウ素をドープしたダイヤモンドの入力ファイル


下記に示すのが、ホウ素をドープしたダイヤモンドの計算を行うための入力ファイルです。

c------------------------------------------------------------
go data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 200 0.02
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
6 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------

c------------------------------------------------------------
go data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 20 0.0
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
5 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------


まず最初に、純粋なダイヤモンドの計算をしますが、炭素のコンポーネントをあらかじめ95%と5%のふたつに分けておきます。
これを収束された後に、同じポテンシャルファイルから続けて、ホウ素ドープダイヤモンドの計算を行います。

ホウ素ドープダイヤモンドのための入力では、あらかじめふたつに分けておいたコンポーネントの5%の方の原子番号を6(炭素)から5(ホウ素)へ変更します。更に、ポテンシャルを更新しないようにするためにpmix=0.0とします。

この状態で計算を実行すると、チャージニュートラリティーがゼロになるようにフェルミ準位が変化していきます。当然ながら通常の判定では収束しなくなるので、maxitrを小さく変更して適切なところで計算を打ち切るようにします。今回の例では20回程度で充分チャージニュートラリティーがゼロになるようです。

結果


純粋なダイヤモンドの状態密度とリジッドバンド模型もどきで計算した状態密度の比較をFig.1に示します。AkaiKKRでB(N)-dopedダイヤモンドのときと同様にフェルミ準位が元の価電子帯の内部まで移動していることがわかります。

B-doped-Compare.png
Fig.2: リジッドバンド模型もどきとCPAでそれぞれ計算したホウ素ドープダイヤモンドの状態密度


更にCPAの計算結果と直接比較しているのがFig.2です。CPAの結果は、不規則性の効果によって状態密度の鋭さが減じていますが、それ以外の形状はリジッドバンド模型もどきはよく再現しています。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama KKR リジッドバンド模型 CPA 状態密度 DOS 半導体 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式odeトランジスタインターフェースDOSPDS5022定電流スイッチング回路確率論半導体分散関係シェルスクリプト乱数レベルシフトHP6632Aトランジスタ技術温度解析可変抵抗I2CブレッドボードR6452A反強磁性数値積分バンド構造バンドギャップセミナー絶縁偏微分方程式非線形方程式ソルバPWscf熱設計シュミットトリガLED三端子レギュレータ順列・組み合わせLM358GW近似カオスマフィンティン半径ISO-I2CフォトカプラA/Dコンバータ発振回路74HC4053数値微分直流動作点解析サーボPC817CアナログスイッチUSB補間TL431カレントミラーbzqltyVESTA電子負荷イジング模型LDA開発環境ブラべ格子FFT量子力学2ちゃんねるチョッパアンプ単振り子ポケモンGOスーパーリーグ標準ロジックQuantumESPRESSO基本並進ベクトルパラメトリック解析アセンブラBSchトレーナーバトル抵抗Maximaラプラス方程式失敗談状態方程式SMPキュリー温度スイッチト・キャパシタ位相図繰り返し熱伝導gfortranコバルトewidthTLP621不規則合金ランダムウォーク六方最密充填構造FET最適化相対論スピン軌道相互作用QSGWQuantum_ESPRESSOGGAVCA仮想結晶近似スレーターポーリング曲線cygwinZnOシュレディンガー方程式フォノンNE555詰め回路条件分岐固有値問題最大値ダイヤモンドガイガー管TLP552マントル自動計測データロガーQNAPUPSCIF井戸型ポテンシャルMCUxcrysdenゼーベック係数格子比熱最小値LM555フェルミ面fsolve過渡解析差し込みグラフ三角波起電力スーパーセル第一原理計算ブラウン運動FXA-7020ZROpenMPTLP521Ubuntuハーフメタル熱力学Writer509ubuntu平均場近似テスタawkLMC662フィルタMAS830LCK1026トランスPIC16F785AACircuit負帰還安定性ハイパーリーグCapSenseナイキスト線図ノコギリ波2SC1815EAGLEPvPP-10OPA2277MBEPGA入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分不純物問題擬ポテンシャル状態図cif2cellPWguiSIC二相共存リジッドバンド模型edeltquantumESPRESSOスワップ領域ルチル構造ウルツ鉱構造BaO岩塩構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列不規則局所モーメント陰解法熱拡散方程式HiLAPWCrank-Nicolson法連立一次方程式specx.fifort境界条件両対数グラフ片対数グラフGimp円周率ヒストグラムシンボル線種グラフの分割軸ラベル凡例トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ