AkaiKKRでリジッドバンド模型もどき

AkaiKKR(machikaneyama)では、コヒーレントポテンシャル近似(CPA)で不純物の効果を計算することができます。不純物の効果に関して、CPAよりも荒い近似としてよく使われるのがリジッドバンド模型です。今回は、あえて、AkaiKKRの入力ファイルのパラメータのひとつの pmix=0 としてリジッドバンド模型のような計算をホウ素ドープダイヤモンドに関して行ってみました。

Rigidband.png
Fig.1: ダイヤモンドとリジッドバンド模型もどきで計算したホウ素ドープダイヤモンドの状態密度



ホウ素ドープダイヤモンド


AkaiKKRでB(N)-dopedダイヤモンドでは、コヒーレントポテンシャル近似を用いて、ホウ素ドープダイヤモンドと窒素ドープダイヤモンドの状態密度の計算を行いました。その結果、状態密度の形状はドープによってほとんど変わらないものの、価電子の数が変化するためフェルミ準位の位置が変わり、金属・半導体転移が起こることが確認できました。計算にはコヒーレントポテンシャル近似(CPA)を用いましたが、この結果はリジッドバンド模型でもよく近似ができそうだと分かりました。そこで今回は、ホウ素ドープダイヤモンドの状態密度をリジッドバンド模型(のようなもの)で計算して、CPAの結果と比較します。

リジッドバンド模型もどき


リジッドバンド模型は、単純に状態密度の形状が変わらず、ドープによりフェルミエネルギーの位置が変わるだけとする近似です。従って、通常通りに純粋なダイヤモンドの第一原理計算を行った後に、得られた状態密度と積分状態密度の数値データからScilab等を使って、ドープ後のフェルミエネルギーの位置を計算するのが普通です。

しかし今回は、(このような方法にメリットがあるかは別問題として)異なる方法でリジッドバンド模型のような計算を行ってみます。

CCMSハンズオン AkaiKKR講習会 2014年7月30日のYoutube動画2:21:28あたりから入力ファイルのpmix=0とした場合に、ポテンシャルが更新されず、チャージニュートラリティーがゼロになるようにフェルミ準位だけが移動すると説明されています。今回はこれを利用します。

5%ホウ素をドープしたダイヤモンドの入力ファイル


下記に示すのが、ホウ素をドープしたダイヤモンドの計算を行うための入力ファイルです。

c------------------------------------------------------------
go data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 200 0.02
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
6 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------

c------------------------------------------------------------
go data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 20 0.0
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
5 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------


まず最初に、純粋なダイヤモンドの計算をしますが、炭素のコンポーネントをあらかじめ95%と5%のふたつに分けておきます。
これを収束された後に、同じポテンシャルファイルから続けて、ホウ素ドープダイヤモンドの計算を行います。

ホウ素ドープダイヤモンドのための入力では、あらかじめふたつに分けておいたコンポーネントの5%の方の原子番号を6(炭素)から5(ホウ素)へ変更します。更に、ポテンシャルを更新しないようにするためにpmix=0.0とします。

この状態で計算を実行すると、チャージニュートラリティーがゼロになるようにフェルミ準位が変化していきます。当然ながら通常の判定では収束しなくなるので、maxitrを小さく変更して適切なところで計算を打ち切るようにします。今回の例では20回程度で充分チャージニュートラリティーがゼロになるようです。

結果


純粋なダイヤモンドの状態密度とリジッドバンド模型もどきで計算した状態密度の比較をFig.1に示します。AkaiKKRでB(N)-dopedダイヤモンドのときと同様にフェルミ準位が元の価電子帯の内部まで移動していることがわかります。

B-doped-Compare.png
Fig.2: リジッドバンド模型もどきとCPAでそれぞれ計算したホウ素ドープダイヤモンドの状態密度


更にCPAの計算結果と直接比較しているのがFig.2です。CPAの結果は、不規則性の効果によって状態密度の鋭さが減じていますが、それ以外の形状はリジッドバンド模型もどきはよく再現しています。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama KKR リジッドバンド模型 CPA 状態密度 DOS 半導体 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性OPアンプPICCPA常微分方程式モンテカルロ解析ecaljodeトランジスタ状態密度インターフェースDOS定電流スイッチング回路PDS5022半導体シェルスクリプトレベルシフト乱数HP6632AR6452AI2C可変抵抗分散関係トランジスタ技術ブレッドボード温度解析反強磁性確率論バンドギャップセミナー数値積分熱設計非線形方程式ソルババンド構造絶縁偏微分方程式ISO-I2CLM358フォトカプラ三端子レギュレータカオスLEDシュミットトリガGW近似A/Dコンバータ発振回路PC817C直流動作点解析USBマフィンティン半径数値微分アナログスイッチTL43174HC4053カレントミラーサーボ量子力学単振り子チョッパアンプ補間2ちゃんねる開発環境bzqltyFFT電子負荷LDAイジング模型BSch基本並進ベクトルブラべ格子パラメトリック解析標準ロジックアセンブラ繰り返し六方最密充填構造SMPコバルトewidthFET仮想結晶近似QSGW不規則合金VCAMaximaGGA熱伝導cygwinスレーターポーリング曲線キュリー温度スイッチト・キャパシタ失敗談ランダムウォークgfortran抵抗相対論位相図スピン軌道相互作用VESTA状態方程式TLP621ラプラス方程式TLP552条件分岐NE555LM555TLP521マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測QNAPUPSWriter509ダイヤモンドデータロガー格子比熱熱力学awkブラウン運動起電力スーパーセル差し込みグラフ第一原理計算フェルミ面fsolve最大値xcrysden最小値最適化ubuntu平均場近似OpenMP井戸型ポテンシャルシュレディンガー方程式固有値問題2SC1815結晶磁気異方性OPA2277非線型方程式ソルバTeXgnuplot固定スピンモーメントFSMPGAc/a全エネルギーfccフラクタルマンデルブロ集合正規分布縮退初期値interp1multiplotフィルタ面心立方構造ウィグナーザイツ胞L10構造半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度化学反応CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタルキーボードフォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt合金等高線線種凡例シンボルトラックボールPC軸ラベルグラフの分割トランス文字列CK1026MAS830L直流解析Excel不規則局所モーメントパラメータ・モデル入出力日本語最小二乗法等価回路モデルヒストグラムGimp円周率TS-110TS-112PIC16F785LMC662三次元specx.fifortUbuntu疎行列不純物問題Realforceジバニャン方程式ヒストグラム確率論マテリアルデザインP-10境界条件連立一次方程式熱拡散方程式AACircuitHiLAPW両対数グラフ片対数グラフ陰解法MBEナイキスト線図負帰還安定性Crank-Nicolson法EAGLE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ