AkaiKKRでリジッドバンド模型もどき

AkaiKKR(machikaneyama)では、コヒーレントポテンシャル近似(CPA)で不純物の効果を計算することができます。不純物の効果に関して、CPAよりも荒い近似としてよく使われるのがリジッドバンド模型です。今回は、あえて、AkaiKKRの入力ファイルのパラメータのひとつの pmix=0 としてリジッドバンド模型のような計算をホウ素ドープダイヤモンドに関して行ってみました。

Rigidband.png
Fig.1: ダイヤモンドとリジッドバンド模型もどきで計算したホウ素ドープダイヤモンドの状態密度



ホウ素ドープダイヤモンド


AkaiKKRでB(N)-dopedダイヤモンドでは、コヒーレントポテンシャル近似を用いて、ホウ素ドープダイヤモンドと窒素ドープダイヤモンドの状態密度の計算を行いました。その結果、状態密度の形状はドープによってほとんど変わらないものの、価電子の数が変化するためフェルミ準位の位置が変わり、金属・半導体転移が起こることが確認できました。計算にはコヒーレントポテンシャル近似(CPA)を用いましたが、この結果はリジッドバンド模型でもよく近似ができそうだと分かりました。そこで今回は、ホウ素ドープダイヤモンドの状態密度をリジッドバンド模型(のようなもの)で計算して、CPAの結果と比較します。

リジッドバンド模型もどき


リジッドバンド模型は、単純に状態密度の形状が変わらず、ドープによりフェルミエネルギーの位置が変わるだけとする近似です。従って、通常通りに純粋なダイヤモンドの第一原理計算を行った後に、得られた状態密度と積分状態密度の数値データからScilab等を使って、ドープ後のフェルミエネルギーの位置を計算するのが普通です。

しかし今回は、(このような方法にメリットがあるかは別問題として)異なる方法でリジッドバンド模型のような計算を行ってみます。

CCMSハンズオン AkaiKKR講習会 2014年7月30日のYoutube動画2:21:28あたりから入力ファイルのpmix=0とした場合に、ポテンシャルが更新されず、チャージニュートラリティーがゼロになるようにフェルミ準位だけが移動すると説明されています。今回はこれを利用します。

5%ホウ素をドープしたダイヤモンドの入力ファイル


下記に示すのが、ホウ素をドープしたダイヤモンドの計算を行うための入力ファイルです。

c------------------------------------------------------------
go data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 200 0.02
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
6 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------

c------------------------------------------------------------
go data/B-doped
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 20 0.0
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 2 1 0.0 2 6 95
5 5
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------


まず最初に、純粋なダイヤモンドの計算をしますが、炭素のコンポーネントをあらかじめ95%と5%のふたつに分けておきます。
これを収束された後に、同じポテンシャルファイルから続けて、ホウ素ドープダイヤモンドの計算を行います。

ホウ素ドープダイヤモンドのための入力では、あらかじめふたつに分けておいたコンポーネントの5%の方の原子番号を6(炭素)から5(ホウ素)へ変更します。更に、ポテンシャルを更新しないようにするためにpmix=0.0とします。

この状態で計算を実行すると、チャージニュートラリティーがゼロになるようにフェルミ準位が変化していきます。当然ながら通常の判定では収束しなくなるので、maxitrを小さく変更して適切なところで計算を打ち切るようにします。今回の例では20回程度で充分チャージニュートラリティーがゼロになるようです。

結果


純粋なダイヤモンドの状態密度とリジッドバンド模型もどきで計算した状態密度の比較をFig.1に示します。AkaiKKRでB(N)-dopedダイヤモンドのときと同様にフェルミ準位が元の価電子帯の内部まで移動していることがわかります。

B-doped-Compare.png
Fig.2: リジッドバンド模型もどきとCPAでそれぞれ計算したホウ素ドープダイヤモンドの状態密度


更にCPAの計算結果と直接比較しているのがFig.2です。CPAの結果は、不規則性の効果によって状態密度の鋭さが減じていますが、それ以外の形状はリジッドバンド模型もどきはよく再現しています。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama KKR リジッドバンド模型 CPA 状態密度 DOS 半導体 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCOPアンプPICCPA強磁性モンテカルロ解析常微分方程式トランジスタode状態密度インターフェースDOSPDS5022ecaljスイッチング回路定電流半導体シェルスクリプトレベルシフト乱数HP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ