AkaiKKRのewidth その2

AkaiKKRのewidth その1では、AkaiKKR(machikayenama)入力ファイルの中の ewidth, edelt と実際に計算される複素エネルギーの経路の関係をまとめました。
今回は ewidth が不適切な値に設定されているときにどのような問題が起こり得るかについて書きます。

ewidth が適切でない場合、計算が収束しない場合があるだけでなく、計算が間違った結果に収束してしまう場合も存在するので注意が必要です。


ewidthが小さすぎる場合


まず ewidth が小さすぎる場合について見てみます。多くの場合、go計算で収束しないだけですが、稀に正しくない結果に収束する場合があるようなので注意が必要です。

Fig.1に示したのは正しいダイヤモンドの状態密度で、下記の入力ファイルで計算したものです。更にこの入力ファイルを ewidth=1.0 Ryに変更した結果がFig.2です。

c------------------------------------------------------------
go data/diamond
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.0 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 200 0.02
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 1 1 0.0 2 6 100
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------

c------------------------------------------------------------
dos data/diamond
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 6.74 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 2.67 sra vwnasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 20 200 0.02
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
C 1 1 0.0 2 6 100
Vc 1 1 0.0 2 0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0.00000 0.00000 0.00000 C
0.25000 0.25000 0.25000 C
0.75000 0.75000 0.75000 Vc
0.50000 0.50000 0.50000 Vc
c------------------------------------------------------------


Diamond.png
Fig.1: ダイヤモンドの正しい状態密度(ewidth = 2.0 Ry)


Diamond-ewidth.png
Fig.2: ダイヤモンドの誤った状態密度(ewidth = 1.0 Ry)


状態密度の形状を比べてみると明らかなように、これら二つの計算は、それぞれ異なった解に収束しています。あらかじめ正しい状態密度の形を知らずに間違った計算例だけを見せられても、結果が正しいのか間違っているのかは判断できないでしょう。従ってAkaiKKRで計算を行う場合は、あらかじめ先行研究の結果を調べておく、あるいは、別の計算コード(HiLAPWとかecaljとか)と同じ結果が得られるかを確認する必要があると思います(参考: AkaiKKRとecaljでCuGaTe2 その1その2)。

ewidth がコア近傍を横切る場合


Fig.3では ewidth が valence state を完全に含み、core state を含まないようにしていることが分かります。このようにするのが理想的なのですが、実際には core state が valence state に近くて ewidth の底がちょうどその間に来るようにすることが難しい場合もあります。そういうときには ewidth が core state を含むようにしても問題なく計算できます。(core state を valence state として扱うようになります。)

akaikkr-handson-2-140815051743-phpapp02.png

Fig.3: 状態密度と複素数エネルギーメッシュの関係。第5回CCMSハンズオン(ソフトウェア講習会): AkaiKKRチュートリアル 2. AkaiKKRの実習より


なお ewidth の底が core state に近い場合、下記のメッセージが出力されます。

***msg in cstate...corelevel near ebtm found for nclr=原子番号


これはメッセージなので、必ずしも問題が起きていることを意味しませんが、もしも上記メッセージが出ていて、かつ、収束しないときや、収束していても結果が怪しいようなら ewidth の値を変更してみると問題が解決するかもしれません。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama KKR ewidth 状態密度 DOS 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ