AkaiKKRでfccNiMnの磁性と格子定数

AkaiKKR(machikaneyama)を用いて面心立方構造(fcc)の不規則NixMn100-x合金の計算を強磁性状態、反強磁性状態、非磁性状態について行いました。その結果、最安定な磁気状態や格子定数の組成依存性が実験結果を(少なくとも定性的には)再現できました。

fccNiMn.gif

Fig.1: fcc NixMn100-x不規則合金の全エネルギーと自発磁化



強磁性・反強磁性転移


志賀正幸著磁性入門―スピンから磁石まで (材料学シリーズ)工学と理学のはざまで - インバー研究の流れ -などに、不規則fccNiMn合金の格子定数と磁性の関係が議論されています。

以下に示すFig.2は工学と理学のはざまで - インバー研究の流れ -から引用したNi-Mn系の実験から得られている格子定数と磁気モーメントです。右端の純ニッケルでは 0.6 μB の磁気モーメントを持つ強磁性体ですが、マンガン濃度が増していく(ニッケル濃度が減っていく)とNi70Mn30よりマンガン側で自発磁化がなくなります。
これは、合金が非磁性になるのではなく、局所モーメントを持ったまま反強磁性体になるからであると書かれています。つまり、この系では(L12型規則相のNi3Mnを除けば)結晶構造が面心立方構造(fcc)から変化せず、格子定数と磁性だけが変化することになります。

NiMn.png

Fig.2: fcc NiMn合金の格子定数とバルクの磁気モーメント 工学と理学のはざまで - インバー研究の流れ -より


AkaiKKRでγ-Mnの反強磁性ではL10型に似た単純な反強磁性の第一原理計算をAkaiKKR(machikaneyama)を用いて行いました。今回は、この単純な反強磁性を仮定してfcc NixMn100-xの計算を行いました。

計算方法


基本的にはAkaiKKRでγ-Mnの反強磁性のときの入力ファイルをコヒーレントポテンシャル近似(CPA)を用いた合金の計算に拡張するだけです。強磁性初期ポテンシャルから、反強磁性初期ポテンシャルをつくるのには、他のパターンもあるのかもしれませんが、1種類だけを考えました。

今回もこれまで同様、強磁性、反強磁性、非磁性の入力ファイルのテンプレートを作成しておいて、格子定数と原子の濃度をパラメータとして変化させながら計算させるシェルスクリプトを作成しました。反強磁性状態の初期ポテンシャルは、強磁性状態のポテンシャルから作成しました(参考:AkaiKKRで反強磁性クロム)。以下に示すのは反強磁性状態の入力ファイルのテンプレートです。

c-----------------------L10fccMn-----------------------------
go data/L10fccNiMn_XINI_AFM_ABOHR
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
bso ABOHR , 1 , 1 , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.2 sra gga91 mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 8 500 0.023
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
NiMn1 2 1 0.0 2 28 XINI
25 XIMN
NiMn2 2 1 0.0 2 28 XINI
25 XIMN
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 NiMn1
1/2 0 1/2 NiMn2
c------------------------------------------------------------


計算結果と議論


冒頭のgif動画は、結果の全磁気モーメント(自発磁化)と全エネルギーを格子定数ごとにプロットしたものです。
赤が反強磁性の初期ポテンシャルから計算した結果です。反強磁性状態が保たれているか、あるいは非磁性状態になっている場合は、全磁気モーメントはゼロになります。こうニッケル濃度側では、有限の自発磁化を持ってしまい、初期ポテンシャルを反強磁性にしても強磁性の解が得られています。

同様に、緑の線で示したのが強磁性初期ポテンシャルから計算したものです。格子定数が小さくなると磁気モーメントがなくなり、非磁性になっているのが分かります。

青はスピン分極を含まない、非磁性の計算で磁気モーメントは常にゼロです。

グラフの下のパネルは、全エネルギーの比較です。
縦軸に数値は振っていませんが、同じ化学組成で相対的な比較ができるようにスケーリングしてあります。

fccNi0Mn100.png

Fig.3: fcc Mnの全エネルギーと磁気モーメント


例えば純マンガンの場合は、反強磁性状態が最安定で、格子定数は a=6.9 Bohr 付近であることが分かります。
強磁性状態と非磁性状態の比較を行うと a=7.1 Bohr 以下では強磁性が消えて、2つの計算は同じ結果を示すことがわかります。高体積側では強磁性状態に極小値がありそうです。

fccNi60Mn40.png

Fig.4: fcc Ni60Mn40の全エネルギーと磁気モーメント


ニッケル濃度を上げて行くと、強磁性状態の全エネルギーが相対的に下がっていきます。Ni60Mn40まで行くと、非磁性状態よりも強磁性状態のほうが安定になりますが、まだ反強磁性が最安定です。

fccNi75Mn25.png

Fig.5: fcc Ni75Mn25の全エネルギーと磁気モーメント


Ni75Mn25から反強磁性初期ポテンシャルの計算でも、正味の磁化が出てくるようです。強磁性計算との全エネルギー差はほとんどないのですが、磁気モーメントには違いがあるので、これらは別の解であるといえます。

fccNi85Mn15.png

Fig.6: fcc Ni85Mn15の全エネルギーと磁気モーメント


Ni85Mn15では、強磁性初期ポテンシャルの計算結果が最低エネルギー状態となります。
全エネルギーの差が小さいので、本当はどちらの磁気構造が安定なのかは微妙な議論になりますが。

次に平衡格子定数についてみてみます。
ニッケル濃度が薄い側からNi50Mn50程度までは、格子定数にほとんど変化が見られないように思います。
それよりも高濃度では、強磁性状態が安定になる前であっても低体積側へ最低エネルギーが移動しているように見えます。

これらの結果を好意的に捉えるなら、Fig.2に示した実験結果をかなりよく再現しているように思えます。

例えば、実験結果では、純ニッケルからマンガン濃度を増していったときには、自発磁化が大きくなっていき、Ni90Mn10付近で最大値をとり、その後、減少していきNi90Mn10付近で自発磁化が消滅します。
このことを踏まえて、計算結果を見てみます。強磁性初期ポテンシャルの計算だけを見ると、純ニッケルからマンガン濃度を増していくにつれて、自発磁化は単純に大きくなっていきます。しかしながら、反強磁性初期ポテンシャルの計算を見ると、単純な強磁性状態とは異なる自発磁化を持った解が得られる組成領域が存在していることが分かります。そしてその解は、本当に微妙な議論ですが、単純な強磁性初期ポテンシャルの結果よりもエネルギー的に安定な領域があってもよさそうです。
このあたりは微妙な議論なので、どの程度本当の物理を再現できているのかは難しいと思います。

関連エントリ




参考URL




付録


このエントリで使用したファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama KKR CPA 強磁性 反強磁性 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性OPアンプPICCPA常微分方程式モンテカルロ解析ecaljodeトランジスタ状態密度インターフェースDOS定電流スイッチング回路PDS5022半導体シェルスクリプトレベルシフト乱数HP6632AR6452AI2C可変抵抗分散関係トランジスタ技術ブレッドボード温度解析反強磁性確率論バンドギャップセミナー数値積分熱設計非線形方程式ソルババンド構造絶縁偏微分方程式ISO-I2CLM358フォトカプラ三端子レギュレータカオスLEDシュミットトリガGW近似A/Dコンバータ発振回路PC817C直流動作点解析USBマフィンティン半径数値微分アナログスイッチTL43174HC4053カレントミラーサーボ量子力学単振り子チョッパアンプ補間2ちゃんねる開発環境bzqltyFFT電子負荷LDAイジング模型BSch基本並進ベクトルブラべ格子パラメトリック解析標準ロジックアセンブラ繰り返し六方最密充填構造SMPコバルトewidthFET仮想結晶近似QSGW不規則合金VCAMaximaGGA熱伝導cygwinスレーターポーリング曲線キュリー温度スイッチト・キャパシタ失敗談ランダムウォークgfortran抵抗相対論位相図スピン軌道相互作用VESTA状態方程式TLP621ラプラス方程式TLP552条件分岐NE555LM555TLP521マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測QNAPUPSWriter509ダイヤモンドデータロガー格子比熱熱力学awkブラウン運動起電力スーパーセル差し込みグラフ第一原理計算フェルミ面fsolve最大値xcrysden最小値最適化ubuntu平均場近似OpenMP井戸型ポテンシャルシュレディンガー方程式固有値問題2SC1815結晶磁気異方性OPA2277非線型方程式ソルバTeXgnuplot固定スピンモーメントFSMPGAc/a全エネルギーfccフラクタルマンデルブロ集合正規分布縮退初期値interp1multiplotフィルタ面心立方構造ウィグナーザイツ胞L10構造半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度化学反応CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタルキーボードフォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt合金等高線線種凡例シンボルトラックボールPC軸ラベルグラフの分割トランス文字列CK1026MAS830L直流解析Excel不規則局所モーメントパラメータ・モデル入出力日本語最小二乗法等価回路モデルヒストグラムGimp円周率TS-110TS-112PIC16F785LMC662三次元specx.fifortUbuntu疎行列不純物問題Realforceジバニャン方程式ヒストグラム確率論マテリアルデザインP-10境界条件連立一次方程式熱拡散方程式AACircuitHiLAPW両対数グラフ片対数グラフ陰解法MBEナイキスト線図負帰還安定性Crank-Nicolson法EAGLE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ