AkaiKKRのspc計算の入出力フォーマット

AkaiKKR(machikaneyama)は26 August 2015からブロッホスペクトル関数の入出力形式が変更されました。
簡単にバンド図が描けるようになり便利なのですが、一方で、これまでのほうが便利だったケースもありえます。
今回は、これを22 May 2015のバージョンと同じフォーマットに戻す方法について書きます。

入力フォーマットは source/spmain.f でサブルーチン readk を呼び出す際の引数 iread を1に指定します。
出力フォーマットは source/spmain.f でサブルーチン wrtspc を呼び出している行をコメントアウトしてしまい、代わりに22 May 2015で出力をしている部分のソースコードをコピペします。


AkaiKKRのブロッホスペクトル関数


AkaiKKR(machikaneyama)は通常のバンド図を出力する代わりにブロッホスペクトル関数を出力します。cpa2002v009cの22 May 2015までは、計算するk点をすべて手動で入力しなければなりませんでした。そのためAkaiKKRでSrTiO3ペロフスカイトなどではgnuplotでバンド構造をプロットするための補助的なScilabスクリプトを使っています。

これに対して26 Augst 2015では、他の一般的なDFTパッケージで見られるように、特徴的なk点の座標とその分割数を指定することで、バンド図を描くことができるようになりました(参考: AkaiKKRでバンド構造(分散関係))。

便利になった反面、特徴的なk点をつなぐパスに沿った計算以外を行う場合、例えばAkaiKKRで銅と銅亜鉛合金のフェルミ面のような計算はやりにくくなりました。また、それ以外にもこれまで書いたスクリプトを再利用するのにも不便です。
そんな折、26 August 2015のソースコードを編集して、以前の入出力形式に戻す方法を教えていただいたので、今回は、この方法についてまとめます。

入力ファイルの形式


spc計算のためのk点指定方法は source/spmain.f の382行目(ぐらい)にある call readk(vkp,coa,boa,nk1,nk3,nk3x,nkmx,kcrt,25,kblst,korder,3) の最後の引数の3を変更することで変えることができます。引数は1, 2, 3の三種類から選ぶことができ、その内容はsource/readk.fのコメントに書かれています。
c-----------------------------------------------------------------------
c This program read-in the k-points according either format (a),
c (b) or (c).
c
c (a) simply input all the k-point to be calculated.
c
c (b) input k-point corresponding to the Gamma, K, M, etc., with
c the number of devision of the k-mesh between that point and
c the previous point. For example, input data such as
c 0.0 0.0 0.0 0
c 1.0 0.0 0.0 50
c
c means that the line connecting (0, 0, 0) and (1, 0, 0)
c is divided into 50 pieces, and on each grid points
c including both endpoints the Bloch spectrum function
c will be calculated.
c
c (c) input k-point corresponding to the Gamma, K, M, etc., with
c the total number of k-point to be used as the first data.
c For example, input data such as
c 101
c 0.0 0.0 0.0
c 1.0 0.0 0.0
c 1.0 0.5 0.0
c
c means that the line connecting (0, 0, 0), (1, 0, 0), and
c (1, 0.5, 0) is divided into more or less equidistant 100
c pieces, and on each grid points including both endpoints
c the Bloch spectrum function will be calculated.
c
c In all formats, data will be read-in untill any data that
c do not follow the above format be met. Which format should be
c adopted is controled by a parameter iread. If iread=1,
c format (a), iread=2 for (b), and iread=3 for (c)
c All the data shoulbe be given in the unit of 2pi*(1/a, 1/b, 1/c),
c i.e. actual k vector is 2pi*(kx/a, ky/b, kz/c), where a, b, c
c are the lattice constant along x, y, and z direction.
c
c Coded by H. Akai, 4 June 2015, Tokyo
c-----------------------------------------------------------------------

今回は、すべてのk点を手動で指定する(a)に戻すので、最後の引数である iread の3を1に変更します。
c     call readk(vkp,coa,boa,nk1,nk3,nk3x,nkmx,kcrt,25,kblst,korder,3)
call readk(vkp,coa,boa,nk1,nk3,nk3x,nkmx,kcrt,25,kblst,korder,1)


出力ファイルの形式


出力形式の指定は source/wrtspc.f の中で行われますが source/readk.f ほどには、整備されていないようです。このsource/readk.fが追加されたのは26 August 2015からで22 May 2015の段階では、まだsource/wrtspc.fは作成されておらずファイルの出力も source/spmain.f の中で行われています。26 August 2015では wrtspcのサブルーチンは source/spmain.f の735行目(ぐらい)の call wrtspc(spctrl,is,e,mse,kcrt,kblst,nk3,ef) で呼び出されています。そこでこの呼び出しの部分をコメントアウトしてしまい、代わりに22 May 2015の source/spmain.f の else if(ids .eq. 4) then (748行目ぐらい)と endif (784行目ぐらい)の間をコピー&ペーストします。

こうすることによって26 August 2015を使いながら、ブロッホスペクトル関数の入出力を22 May 2015以前の形式にすることができます。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama 分散関係 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj常微分方程式モンテカルロ解析状態密度トランジスタodeDOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト分散関係レベルシフト乱数HP6632AR6452A可変抵抗トランジスタ技術温度解析ブレッドボードI2C反強磁性確率論数値積分セミナーバンドギャップバンド構造偏微分方程式非線形方程式ソルバ熱設計絶縁ISO-I2Cカオス三端子レギュレータLM358GW近似マフィンティン半径A/DコンバータフォトカプラシュミットトリガLEDPC817C発振回路数値微分直流動作点解析サーボカレントミラーTL431アナログスイッチUSB74HC4053bzqltyVESTA補間電子負荷アセンブライジング模型BSch量子力学単振り子2ちゃんねるチョッパアンプLDA開発環境基本並進ベクトルFFT標準ロジックブラべ格子パラメトリック解析抵抗SMPMaxima失敗談ラプラス方程式繰り返し位相図スイッチト・キャパシタ熱伝導状態方程式キュリー温度gfortranコバルトTLP621不規則合金Quantum_ESPRESSO六方最密充填構造ランダムウォーク相対論ewidthスピン軌道相互作用FETQSGWVCAcygwinスレーターポーリング曲線GGA仮想結晶近似PWscfシュレディンガー方程式LM555ハーフメタル固有値問題NE555最小値ガイガー管QNAPUPS自動計測ダイヤモンドマントルTLP552格子比熱最適化MCU井戸型ポテンシャル最大値xcrysdenCIF条件分岐詰め回路フェルミ面差し込みグラフスーパーセルfsolveブラウン運動awk過渡解析起電力三角波第一原理計算FXA-7020ZRWriter509Ubuntuテスタ熱力学データロガーTLP521OpenMPubuntu平均場近似MAS830LトランスCK1026PIC16F785PGA2SC1815EAGLEノコギリ波負帰還安定性ナイキスト線図MBEOPA2277P-10フィルタCapSenseAACircuitLMC662文字列固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型電荷密度重積分SIC二相共存磁気モーメント不純物問題PWgui擬ポテンシャルゼーベック係数ZnOウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデルcif2cell入出力陰解法熱拡散方程式HiLAPW両対数グラフCrank-Nicolson法連立一次方程式specx.fifort境界条件片対数グラフグラフの分割円周率ヒストグラム不規則局所モーメントGimpシンボル軸ラベル凡例線種トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ