Maximaで3点を通る放物線

高校数学で3点を通る放物線を求める問題を以下のYoutube動画のように習いました。



高校数学の範囲では、答えを数値的に求めましたが、では独立な3点(x1, y1), (x2, y2), (x3, y3)を通る放物線を解析的に解くにはどうしたらよいでしょうか?Maximaをつかえば、以下のように入力するだけで y = a x2 + b x + c の係数(a, b, c)を求めることができます。

solve([y[1]=a*x[1]^2+b*x[1]+c,
y[2]=a*x[2]^2+b*x[2]+c,
y[3]=a*x[3]^2+b*x[3]+c],
[a,b,c]);



放物線の式(二次方程式)


放物線の式は、以下のような形で表すことができます。
一般型: y=a x2 + b x + c
頂点型: y=a (x - p)2 + q

独立な3点(x1, y1), (x2, y2), (x3, y3)を通る放物線を求めたいとします。

(x1, y1), (x2, y2), (x3, y3)が全て数値的に与えられていれば、冒頭のyoutube動画のように手計算で式を求めることができますし、Scilabで連立一次方程式のように数値計算ソフトでも係数を決定することができます。

しかしながら、一般型(a, b, c)にせよ頂点型(a, p, q)にせよ、3点が文字のままでも解析的に形を求めることができるはずです。
こういう時にはMaximaが便利です。

一般型


放物線 y=a x2 + b x + c が独立な3点(x1, y1), (x2, y2), (x3, y3)を通るとき、係数a, b, cを求めるという問題は以下の連立方程式をa, b, cについて解くことと同じです。

\begin{equation}
y_1 = x_1^2 a + x_1 b + c \\
y_2 = x_2^2 a + x_2 b + c \\
y_3 = x_3^2 a + x_2 b + c
\end{equation}

行列で書くと以下のようになります。

\begin{equation}
\begin{pmatrix}
x_1^2 & x_1 & 1 \\
x_2^2 & x_2 & 1 \\
x_3^2 & x_3 & 1
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix}
=
\begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix}
\end{equation}

これはMaximaに以下のように入力することで解くことができます。
solve([y[1]=a*x[1]^2+b*x[1]+c,
y[2]=a*x[2]^2+b*x[2]+c,
y[3]=a*x[3]^2+b*x[3]+c],
[a,b,c]);


\begin{equation}
a=\frac{{x}_{1}\,\left( {y}_{3}-{y}_{2}\right) -{x}_{2}\,{y}_{3}+{y}_{2}\,{x}_{3}+{y}_{1}\,\left( {x}_{2}-{x}_{3}\right) }{{x}_{1}\,\left( {x}_{3}^{2}-{x}_{2}^{2}\right) -{x}_{2}\,{x}_{3}^{2}+{x}_{2}^{2}\,{x}_{3}+{x}_{1}^{2}\,\left( {x}_{2}-{x}_{3}\right) }
\end{equation}
\begin{equation}
b=-\frac{{x}_{1}^{2}\,\left( {y}_{3}-{y}_{2}\right) -{x}_{2}^{2}\,{y}_{3}+{y}_{2}\,{x}_{3}^{2}+{y}_{1}\,\left( {x}_{2}^{2}-{x}_{3}^{2}\right) }{{x}_{1}\,\left( {x}_{3}^{2}-{x}_{2}^{2}\right) -{x}_{2}\,{x}_{3}^{2}+{x}_{2}^{2}\,{x}_{3}+{x}_{1}^{2}\,\left( {x}_{2}-{x}_{3}\right) }
\end{equation}
\begin{equation}
c=\frac{{x}_{1}\,\left( {y}_{2}\,{x}_{3}^{2}-{x}_{2}^{2}\,{y}_{3}\right) +{x}_{1}^{2}\,\left( {x}_{2}\,{y}_{3}-{y}_{2}\,{x}_{3}\right) +{y}_{1}\,\left( {x}_{2}^{2}\,{x}_{3}-{x}_{2}\,{x}_{3}^{2}\right) }{{x}_{1}\,\left( {x}_{3}^{2}-{x}_{2}^{2}\right) -{x}_{2}\,{x}_{3}^{2}+{x}_{2}^{2}\,{x}_{3}+{x}_{1}^{2}\,\left( {x}_{2}-{x}_{3}\right) }
\end{equation}

頂点型


頂点型の場合も同様です。

\begin{equation}
y_1 = a (x_1 - p)^2 + q \\
y_2 = a (x_2 - p)^2 + q \\
y_3 = a (x_3 - p)^2 + q
\end{equation}

Maximaに以下のように入力します。
solve([y[1]=a*(x[1]-p)^2+q, 
y[2]=a*(x[2]-p)^2+q,
y[3]=a*(x[3]-p)^2+q],
[a,p,q]);


答えは以下のようになりました。
\[a=\frac{\left( {x}_{2}-{x}_{1}\right) \,{y}_{3}+\left( {y}_{1}-{y}_{2}\right) \,{x}_{3}+{x}_{1}\,{y}_{2}-{y}_{1}\,{x}_{2}}{\left( {x}_{2}-{x}_{1}\right) \,{x}_{3}^{2}+\left( {x}_{1}^{2}-{x}_{2}^{2}\right) \,{x}_{3}+{x}_{1}\,{x}_{2}^{2}-{x}_{1}^{2}\,{x}_{2}}\]

\[p=\frac{\left( {x}_{2}^{2}-{x}_{1}^{2}\right) \,{y}_{3}+\left( {y}_{1}-{y}_{2}\right) \,{x}_{3}^{2}+{x}_{1}^{2}\,{y}_{2}-{y}_{1}\,{x}_{2}^{2}}{\left( 2\,{x}_{2}-2\,{x}_{1}\right) \,{y}_{3}+\left( 2\,{y}_{1}-2\,{y}_{2}\right) \,{x}_{3}+2\,{x}_{1}\,{y}_{2}-2\,{y}_{1}\,{x}_{2}}\]

qは長くなりすぎるので割愛...

関連エントリ




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Maxima  

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPA強磁性PICモンテカルロ解析常微分方程式odeトランジスタecalj状態密度DOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析分散関係I2Cトランジスタ技術R6452A可変抵抗ブレッドボードセミナーバンドギャップ数値積分確率論反強磁性偏微分方程式バンド構造絶縁熱設計非線形方程式ソルバフォトカプラシュミットトリガLEDLM358カオスISO-I2C三端子レギュレータGW近似A/Dコンバータカレントミラーアナログスイッチ数値微分マフィンティン半径TL431発振回路サーボPC817CUSB直流動作点解析74HC4053補間FFTBSch開発環境パラメトリック解析2ちゃんねるチョッパアンプ量子力学bzqlty電子負荷イジング模型LDA標準ロジックアセンブラ基本並進ベクトルブラべ格子単振り子熱伝導位相図TLP621キュリー温度繰り返し状態方程式MaximaVESTAスイッチト・キャパシタ相対論FETランダムウォークスピン軌道相互作用SMP六方最密充填構造抵抗不規則合金ewidthスレーターポーリング曲線GGAラプラス方程式cygwingfortranQSGW失敗談コバルト条件分岐TLP521テスタLM555Writer509TLP552格子比熱マントルデータロガー自動計測詰め回路ガイガー管ダイヤモンドQNAPMCUFXA-7020ZR過渡解析三角波UPSNE555固有値問題熱力学ブラウン運動フェルミ面awk起電力第一原理計算OpenMPfsolveubuntu最大値xcrysden最小値最適化仮想結晶近似VCA差し込みグラフスーパーセル井戸型ポテンシャル平均場近似シュレディンガー方程式FSMフラクタルOPA2277固定スピンモーメント2SC1815全エネルギー合金multiplotgnuplotc/aTeX結晶磁気異方性interp1ウィグナーザイツ胞初期値マンデルブロ集合疎行列面心立方構造fcc不純物問題非線型方程式ソルバフィルタL10構造PGA半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度三次元CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタル正規分布フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt縮退キーボード軸ラベルグラフの分割凡例トラックボールPC不規則局所モーメント片対数グラフトランス両対数グラフCK1026MAS830L直流解析Excel円周率パラメータ・モデルヒストグラム日本語最小二乗法等価回路モデルGimp線種シンボルTS-110TS-112PIC16F785LMC662化学反応文字列specx.f入出力ifortマテリアルデザインヒストグラム確率論Realforce等高線ジバニャン方程式P-10Ubuntuナイキスト線図Crank-Nicolson法陰解法熱拡散方程式HiLAPWAACircuit連立一次方程式負帰還安定性境界条件EAGLEMBE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ