Maximaで3点を通る放物線

高校数学で3点を通る放物線を求める問題を以下のYoutube動画のように習いました。



高校数学の範囲では、答えを数値的に求めましたが、では独立な3点(x1, y1), (x2, y2), (x3, y3)を通る放物線を解析的に解くにはどうしたらよいでしょうか?Maximaをつかえば、以下のように入力するだけで y = a x2 + b x + c の係数(a, b, c)を求めることができます。

solve([y[1]=a*x[1]^2+b*x[1]+c,
y[2]=a*x[2]^2+b*x[2]+c,
y[3]=a*x[3]^2+b*x[3]+c],
[a,b,c]);



放物線の式(二次方程式)


放物線の式は、以下のような形で表すことができます。
一般型: y=a x2 + b x + c
頂点型: y=a (x - p)2 + q

独立な3点(x1, y1), (x2, y2), (x3, y3)を通る放物線を求めたいとします。

(x1, y1), (x2, y2), (x3, y3)が全て数値的に与えられていれば、冒頭のyoutube動画のように手計算で式を求めることができますし、Scilabで連立一次方程式のように数値計算ソフトでも係数を決定することができます。

しかしながら、一般型(a, b, c)にせよ頂点型(a, p, q)にせよ、3点が文字のままでも解析的に形を求めることができるはずです。
こういう時にはMaximaが便利です。

一般型


放物線 y=a x2 + b x + c が独立な3点(x1, y1), (x2, y2), (x3, y3)を通るとき、係数a, b, cを求めるという問題は以下の連立方程式をa, b, cについて解くことと同じです。

\begin{equation}
y_1 = x_1^2 a + x_1 b + c \\
y_2 = x_2^2 a + x_2 b + c \\
y_3 = x_3^2 a + x_2 b + c
\end{equation}

行列で書くと以下のようになります。

\begin{equation}
\begin{pmatrix}
x_1^2 & x_1 & 1 \\
x_2^2 & x_2 & 1 \\
x_3^2 & x_3 & 1
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix}
=
\begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix}
\end{equation}

これはMaximaに以下のように入力することで解くことができます。
solve([y[1]=a*x[1]^2+b*x[1]+c,
y[2]=a*x[2]^2+b*x[2]+c,
y[3]=a*x[3]^2+b*x[3]+c],
[a,b,c]);


\begin{equation}
a=\frac{{x}_{1}\,\left( {y}_{3}-{y}_{2}\right) -{x}_{2}\,{y}_{3}+{y}_{2}\,{x}_{3}+{y}_{1}\,\left( {x}_{2}-{x}_{3}\right) }{{x}_{1}\,\left( {x}_{3}^{2}-{x}_{2}^{2}\right) -{x}_{2}\,{x}_{3}^{2}+{x}_{2}^{2}\,{x}_{3}+{x}_{1}^{2}\,\left( {x}_{2}-{x}_{3}\right) }
\end{equation}
\begin{equation}
b=-\frac{{x}_{1}^{2}\,\left( {y}_{3}-{y}_{2}\right) -{x}_{2}^{2}\,{y}_{3}+{y}_{2}\,{x}_{3}^{2}+{y}_{1}\,\left( {x}_{2}^{2}-{x}_{3}^{2}\right) }{{x}_{1}\,\left( {x}_{3}^{2}-{x}_{2}^{2}\right) -{x}_{2}\,{x}_{3}^{2}+{x}_{2}^{2}\,{x}_{3}+{x}_{1}^{2}\,\left( {x}_{2}-{x}_{3}\right) }
\end{equation}
\begin{equation}
c=\frac{{x}_{1}\,\left( {y}_{2}\,{x}_{3}^{2}-{x}_{2}^{2}\,{y}_{3}\right) +{x}_{1}^{2}\,\left( {x}_{2}\,{y}_{3}-{y}_{2}\,{x}_{3}\right) +{y}_{1}\,\left( {x}_{2}^{2}\,{x}_{3}-{x}_{2}\,{x}_{3}^{2}\right) }{{x}_{1}\,\left( {x}_{3}^{2}-{x}_{2}^{2}\right) -{x}_{2}\,{x}_{3}^{2}+{x}_{2}^{2}\,{x}_{3}+{x}_{1}^{2}\,\left( {x}_{2}-{x}_{3}\right) }
\end{equation}

頂点型


頂点型の場合も同様です。

\begin{equation}
y_1 = a (x_1 - p)^2 + q \\
y_2 = a (x_2 - p)^2 + q \\
y_3 = a (x_3 - p)^2 + q
\end{equation}

Maximaに以下のように入力します。
solve([y[1]=a*(x[1]-p)^2+q, 
y[2]=a*(x[2]-p)^2+q,
y[3]=a*(x[3]-p)^2+q],
[a,p,q]);


答えは以下のようになりました。
\[a=\frac{\left( {x}_{2}-{x}_{1}\right) \,{y}_{3}+\left( {y}_{1}-{y}_{2}\right) \,{x}_{3}+{x}_{1}\,{y}_{2}-{y}_{1}\,{x}_{2}}{\left( {x}_{2}-{x}_{1}\right) \,{x}_{3}^{2}+\left( {x}_{1}^{2}-{x}_{2}^{2}\right) \,{x}_{3}+{x}_{1}\,{x}_{2}^{2}-{x}_{1}^{2}\,{x}_{2}}\]

\[p=\frac{\left( {x}_{2}^{2}-{x}_{1}^{2}\right) \,{y}_{3}+\left( {y}_{1}-{y}_{2}\right) \,{x}_{3}^{2}+{x}_{1}^{2}\,{y}_{2}-{y}_{1}\,{x}_{2}^{2}}{\left( 2\,{x}_{2}-2\,{x}_{1}\right) \,{y}_{3}+\left( 2\,{y}_{1}-2\,{y}_{2}\right) \,{x}_{3}+2\,{x}_{1}\,{y}_{2}-2\,{y}_{1}\,{x}_{2}}\]

qは長くなりすぎるので割愛...

関連エントリ




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Maxima  

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ