スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。


Maximaで3点を通る放物線

高校数学で3点を通る放物線を求める問題を以下のYoutube動画のように習いました。



高校数学の範囲では、答えを数値的に求めましたが、では独立な3点(x1, y1), (x2, y2), (x3, y3)を通る放物線を解析的に解くにはどうしたらよいでしょうか?Maximaをつかえば、以下のように入力するだけで y = a x2 + b x + c の係数(a, b, c)を求めることができます。

solve([y[1]=a*x[1]^2+b*x[1]+c,
y[2]=a*x[2]^2+b*x[2]+c,
y[3]=a*x[3]^2+b*x[3]+c],
[a,b,c]);



放物線の式(二次方程式)


放物線の式は、以下のような形で表すことができます。
一般型: y=a x2 + b x + c
頂点型: y=a (x - p)2 + q

独立な3点(x1, y1), (x2, y2), (x3, y3)を通る放物線を求めたいとします。

(x1, y1), (x2, y2), (x3, y3)が全て数値的に与えられていれば、冒頭のyoutube動画のように手計算で式を求めることができますし、Scilabで連立一次方程式のように数値計算ソフトでも係数を決定することができます。

しかしながら、一般型(a, b, c)にせよ頂点型(a, p, q)にせよ、3点が文字のままでも解析的に形を求めることができるはずです。
こういう時にはMaximaが便利です。

一般型


放物線 y=a x2 + b x + c が独立な3点(x1, y1), (x2, y2), (x3, y3)を通るとき、係数a, b, cを求めるという問題は以下の連立方程式をa, b, cについて解くことと同じです。

\begin{equation}
y_1 = x_1^2 a + x_1 b + c \\
y_2 = x_2^2 a + x_2 b + c \\
y_3 = x_3^2 a + x_2 b + c
\end{equation}

行列で書くと以下のようになります。

\begin{equation}
\begin{pmatrix}
x_1^2 & x_1 & 1 \\
x_2^2 & x_2 & 1 \\
x_3^2 & x_3 & 1
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix}
=
\begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix}
\end{equation}

これはMaximaに以下のように入力することで解くことができます。
solve([y[1]=a*x[1]^2+b*x[1]+c,
y[2]=a*x[2]^2+b*x[2]+c,
y[3]=a*x[3]^2+b*x[3]+c],
[a,b,c]);


\begin{equation}
a=\frac{{x}_{1}\,\left( {y}_{3}-{y}_{2}\right) -{x}_{2}\,{y}_{3}+{y}_{2}\,{x}_{3}+{y}_{1}\,\left( {x}_{2}-{x}_{3}\right) }{{x}_{1}\,\left( {x}_{3}^{2}-{x}_{2}^{2}\right) -{x}_{2}\,{x}_{3}^{2}+{x}_{2}^{2}\,{x}_{3}+{x}_{1}^{2}\,\left( {x}_{2}-{x}_{3}\right) }
\end{equation}
\begin{equation}
b=-\frac{{x}_{1}^{2}\,\left( {y}_{3}-{y}_{2}\right) -{x}_{2}^{2}\,{y}_{3}+{y}_{2}\,{x}_{3}^{2}+{y}_{1}\,\left( {x}_{2}^{2}-{x}_{3}^{2}\right) }{{x}_{1}\,\left( {x}_{3}^{2}-{x}_{2}^{2}\right) -{x}_{2}\,{x}_{3}^{2}+{x}_{2}^{2}\,{x}_{3}+{x}_{1}^{2}\,\left( {x}_{2}-{x}_{3}\right) }
\end{equation}
\begin{equation}
c=\frac{{x}_{1}\,\left( {y}_{2}\,{x}_{3}^{2}-{x}_{2}^{2}\,{y}_{3}\right) +{x}_{1}^{2}\,\left( {x}_{2}\,{y}_{3}-{y}_{2}\,{x}_{3}\right) +{y}_{1}\,\left( {x}_{2}^{2}\,{x}_{3}-{x}_{2}\,{x}_{3}^{2}\right) }{{x}_{1}\,\left( {x}_{3}^{2}-{x}_{2}^{2}\right) -{x}_{2}\,{x}_{3}^{2}+{x}_{2}^{2}\,{x}_{3}+{x}_{1}^{2}\,\left( {x}_{2}-{x}_{3}\right) }
\end{equation}

頂点型


頂点型の場合も同様です。

\begin{equation}
y_1 = a (x_1 - p)^2 + q \\
y_2 = a (x_2 - p)^2 + q \\
y_3 = a (x_3 - p)^2 + q
\end{equation}

Maximaに以下のように入力します。
solve([y[1]=a*(x[1]-p)^2+q, 
y[2]=a*(x[2]-p)^2+q,
y[3]=a*(x[3]-p)^2+q],
[a,p,q]);


答えは以下のようになりました。
\[a=\frac{\left( {x}_{2}-{x}_{1}\right) \,{y}_{3}+\left( {y}_{1}-{y}_{2}\right) \,{x}_{3}+{x}_{1}\,{y}_{2}-{y}_{1}\,{x}_{2}}{\left( {x}_{2}-{x}_{1}\right) \,{x}_{3}^{2}+\left( {x}_{1}^{2}-{x}_{2}^{2}\right) \,{x}_{3}+{x}_{1}\,{x}_{2}^{2}-{x}_{1}^{2}\,{x}_{2}}\]

\[p=\frac{\left( {x}_{2}^{2}-{x}_{1}^{2}\right) \,{y}_{3}+\left( {y}_{1}-{y}_{2}\right) \,{x}_{3}^{2}+{x}_{1}^{2}\,{y}_{2}-{y}_{1}\,{x}_{2}^{2}}{\left( 2\,{x}_{2}-2\,{x}_{1}\right) \,{y}_{3}+\left( 2\,{y}_{1}-2\,{y}_{2}\right) \,{x}_{3}+2\,{x}_{1}\,{y}_{2}-2\,{y}_{1}\,{x}_{2}}\]

qは長くなりすぎるので割愛...

関連エントリ




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Maxima  

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式トランジスタodeDOSインターフェースPDS5022定電流スイッチング回路分散関係半導体シェルスクリプトレベルシフト乱数HP6632A可変抵抗トランジスタ技術R6452AI2C温度解析ブレッドボードバンドギャップ確率論反強磁性セミナーバンド構造数値積分偏微分方程式非線形方程式ソルバ熱設計絶縁三端子レギュレータISO-I2CA/DコンバータシュミットトリガフォトカプラカオスPWscfGW近似LM358LEDマフィンティン半径発振回路USB数値微分TL431PC817Cサーボアナログスイッチ直流動作点解析補間カレントミラー74HC4053bzqltyチョッパアンプFFT2ちゃんねる開発環境量子力学単振り子電子負荷VESTAQuantumESPRESSO標準ロジックパラメトリック解析ブラべ格子イジング模型アセンブラLDA基本並進ベクトルBSchSMPTLP621失敗談六方最密充填構造コバルト位相図QSGWGGAスイッチト・キャパシタewidth状態方程式VCAキュリー温度繰り返し最適化仮想結晶近似不規則合金熱伝導gfortran相対論抵抗FETMaximaQuantum_ESPRESSOcygwinランダムウォークラプラス方程式スピン軌道相互作用スレーターポーリング曲線マントルシュレディンガー方程式ZnO自動計測QNAP固有値問題ダイヤモンドデータロガー井戸型ポテンシャルTLP552CIFxcrysdenゼーベック係数熱力学条件分岐MCU最小値UPS格子比熱最大値ガイガー管平均場近似過渡解析Writer509スーパーセルFXA-7020ZR差し込みグラフ第一原理計算テスタ起電力OpenMP三角波ubuntuLM555NE555ブラウン運動詰め回路ハーフメタルawkfsolveUbuntuフェルミ面TLP521トランスMAS830LPGACK1026OPA2277フィルタトレーナーバトルEAGLEノコギリ波負帰還安定性ナイキスト線図MBEP-10LMC6622SC1815CapSenseAACircuitPIC16F785入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式ヒストグラム確率論初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分SIC不純物問題擬ポテンシャル状態図cif2cellPWgui二相共存ウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造マテリアルデザインspecx.fフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列ポケモンGO熱拡散方程式HiLAPW両対数グラフ片対数グラフ陰解法Crank-Nicolson法ifort境界条件連立一次方程式グラフの分割軸ラベルヒストグラム不規則局所モーメントスーパーリーグ円周率Gimp凡例線種シンボルトラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。