スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。


AkaiKKRでSi中のAu不純物

AkaiKKR(machikaneyama)は、合金の希薄な極限として不純物計算が可能です。今回は、ダイヤモンド構造の半導体であるシリコンに不純物元素となる金を入れたときの、金が作る部分状態密度を計算しました。


Si-DOS.png

Fig.1: ダイヤモンド構造シリコンの全状態密度(赤)と不純物の金の部分状態密度(緑)。金の状態密度が、丁度シリコンのバンドギャップの位置に鋭いピークを持っている。


その結果、金の部分状態密度は、シリコンのバンドギャップの真ん中に鋭い状態密度のピークを持つことが確認できました。このことから、金の不純物は半導体としてのシリコンの特性に深刻な影響を与えるであろうことが予想できます。


シリコン中の金の不純物


ダイヤモンド構造のシリコンは、バンドギャップを持つ半導体です。密度汎関数理論入門: 理論とその応用では8章で、シリコン中の不純物の金が状態密度に与える影響について議論しています。その中で、もっとも重要な点として挙げているのがAu不純物によってSiのバンドギャップの中に鋭い状態密度のピークが生じてしまう点です。

密度汎関数理論入門: 理論とその応用ではこのことを示すために、原子を54個含むスーパーセルを用いてSi53Auの計算を行っています。
しかしながら、実際に工業的に使われるシリコンの純度から考えると1.85%の不純物(54個中1個の不純物原子)の濃度は明らかに濃すぎます。とはいえ、希薄な不純物をスーパーセル法で計算しようとすると非常に大きなスーパーセルが必要になってしまいます。

AkaiKKR(machikaneyama)は、コヒーレンとポテンシャル近似(CPA)を用いて、スーパーセルを用いずに任意の濃度の合金の計算が可能です(参考: AkaiKKRでスーパーセル その1)。それに加えて、希薄な極限としての不純物計算ができます。

不純物計算の入力ファイル


AkaiKKRでダイヤモンド型構造半導体の入力ファイルをベースに作成してあります。局所密度近似(LDA)の範囲で計算しているので、バンドギャップは過小評価となります。この系では空孔を2つ加えたうえで原子球近似(ASA)を使うのが最良の結果になるようです。

不純物計算は、通常のCPAと同様に2成分系の計算の入力ファイルを作成します。この際に不純物濃度を0としておけば、希薄の極限である不純物計算になります。不純物計算では、不純物の存在はホストとなるシリコンの電子状態に影響を与えません。ただしewidthはホストのシリコンと不純物原子の金の両方の価電子帯をカバーしている必要があります。

今回は、状態密度計算のbzqltyはかなり大きめに取りました。

c----------------------Si------------------------------------
go data/SiAu
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 10.26 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.5 sra mjwasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 200 0.02
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Si 2 1 0.0 2
14 100
79 0
Vc 1 1 0.0 2
0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Si
1/4 1/4 1/4 Si
1/2 1/2 1/2 Vc
3/4 3/4 3/4 Vc
c------------------------------------------------------------

c----------------------Si------------------------------------
dos data/SiAu
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 10.26 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.5 sra mjwasa nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 22 200 0.02
c------------------------------------------------------------
c ntyp
2
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Si 2 1 0.0 2
14 100
79 0
Vc 1 1 0.0 2
0 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Si
1/4 1/4 1/4 Si
1/2 1/2 1/2 Vc
3/4 3/4 3/4 Vc
c------------------------------------------------------------


不純物原子の部分状態密度


Fig.1はシリコンの全状態密度とAu不純物の部分状態密度を同時にプロットしたものです。赤の線がシリコンの全状態密度で、緑の線が金の部分状態密度です。縦軸を共通に取っていますが、縦軸方向の相対的な大きさには意味はありません。横軸のエネルギーで見て、シリコンのバンドギャップに位置する場所に、金の鋭いピークができている事だけ注目してください。

日常的に目にする金属や半導体の電子物性は、フェルミ準位近傍の電子の寄与が最も大きいです。したがって、不純物を入れたときに、その不純物の部分状態密度がフェルミ準位の近くに状態を作るかどうかを確認するだけでも意味がある事です。スーパーセルを使って希薄不純物の計算を行うには、大きなスーパーセルが必要とされるため計算コストがかかるため、CPAにアドバンテージがあります。一方で、不純物周りの格子緩和などに興味がある場合は、スーパーセル法が必要になります。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama KKR 半導体 バンドギャップ 

comment

Secret

No title

お世話になっております。
AkaiKKRが不純物(空孔)計算を得意とする事が分かる記事で、興味深く拝見させて頂きました。

gomisaiさんがこれまでに計算された、ZnO等の酸化物における、不純物元素の置換を伴わない酸素の欠損にも、同様の手法は適用可能なのでしょうか。

お手数おかけいたしますが、ご回答のほどよろしくお願い致します。

Re: No title

あたさん、こんにちは。

結局のところ、ブログエントリになっていないものは、私も計算していないか、計算したけれどエントリに書けないかのどちらかなので。既存のエントリで一番近いのは以下のものと思います。

AkaiKKRで点欠陥の形成エネルギー(未完)
http://gomisai.blog75.fc2.com/blog-entry-714.html

No title

お忙しいところ、ご回答頂きあがとうございました。

「AkaiKKRで点欠陥の形成エネルギー(未完) 」の記事で内容を確認させて頂きました。AkaiKKRでは、「anclr=0」で空孔を簡単に定義できるので凄いと思いました。

本日、AkaiKKRをインストールし、gomisaiさんの記事を参考にFeのテスト計算をやってみました。さらに勉強を進めたいと思います。
FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式トランジスタodeDOSインターフェースPDS5022定電流スイッチング回路分散関係半導体シェルスクリプトレベルシフト乱数HP6632A可変抵抗トランジスタ技術R6452AI2C温度解析ブレッドボードバンドギャップ確率論反強磁性セミナーバンド構造数値積分偏微分方程式非線形方程式ソルバ熱設計絶縁三端子レギュレータISO-I2CA/DコンバータシュミットトリガフォトカプラカオスPWscfGW近似LM358LEDマフィンティン半径発振回路USB数値微分TL431PC817Cサーボアナログスイッチ直流動作点解析補間カレントミラー74HC4053bzqltyチョッパアンプFFT2ちゃんねる開発環境量子力学単振り子電子負荷VESTAQuantumESPRESSO標準ロジックパラメトリック解析ブラべ格子イジング模型アセンブラLDA基本並進ベクトルBSchSMPTLP621失敗談六方最密充填構造コバルト位相図QSGWGGAスイッチト・キャパシタewidth状態方程式VCAキュリー温度繰り返し最適化仮想結晶近似不規則合金熱伝導gfortran相対論抵抗FETMaximaQuantum_ESPRESSOcygwinランダムウォークラプラス方程式スピン軌道相互作用スレーターポーリング曲線マントルシュレディンガー方程式ZnO自動計測QNAP固有値問題ダイヤモンドデータロガー井戸型ポテンシャルTLP552CIFxcrysdenゼーベック係数熱力学条件分岐MCU最小値UPS格子比熱最大値ガイガー管平均場近似過渡解析Writer509スーパーセルFXA-7020ZR差し込みグラフ第一原理計算テスタ起電力OpenMP三角波ubuntuLM555NE555ブラウン運動詰め回路ハーフメタルawkfsolveUbuntuフェルミ面TLP521トランスMAS830LPGACK1026OPA2277フィルタトレーナーバトルEAGLEノコギリ波負帰還安定性ナイキスト線図MBEP-10LMC6622SC1815CapSenseAACircuitPIC16F785入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式ヒストグラム確率論初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分SIC不純物問題擬ポテンシャル状態図cif2cellPWgui二相共存ウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造マテリアルデザインspecx.fフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列ポケモンGO熱拡散方程式HiLAPW両対数グラフ片対数グラフ陰解法Crank-Nicolson法ifort境界条件連立一次方程式グラフの分割軸ラベルヒストグラム不規則局所モーメントスーパーリーグ円周率Gimp凡例線種シンボルトラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。