全エネルギーって何だよ?

第一原理計算では、全エネルギーという言葉をよく耳にします。
全エネルギーは、多くの第一原理計算において、最も重要な出力であるにもかかわらず、その物理的意味は、一見すると分かりにくいです。今回は、そんな全エネルギーについて書きます。


001_2015091918355521f.png

Fig.1: 全エネルギーと凝集エネルギーの違いの模式図。この例では六方最密充填(hcp)構造よりも面心立方(fcc)構造の方が熱力学的に安定である。全エネルギーの基準点は、物理的な意味がないため、その実態がイメージしにくい。しかし、相対的な熱力学的安定性を議論するためには問題なく使える。



自由エネルギー


熱力学的な安定性は、自由エネルギーを用いて議論されます。ギブスの自由エネルギーは以下の式で表されます。
\begin{equation}
G(P, T) = E^{coh} + PV - TS
\end{equation}
ここでGはギブスの自由エネルギー、Ecohが凝集エネルギー、Pが圧力、Vが体積、Tが温度、Sがエントロピーです。これらを実際に計算して比較することにより熱力学的な安定性を議論することができます。
例えば、銅の結晶構造は常温常圧で面心立方構造(fcc)を取り、六方最密充填構造(hcp)ではありません。ギブスの自由エネルギーとの関係でいうと、fcc銅のギブスの自由エネルギーは、hcp銅の自由エネルギーよりも低いという事です。

さて、常温常圧ではT= 300 K, P = 1 barなのですが、簡単のためにT = 0 K, P = 0 barとしてしまうと、ギブスの自由エネルギーGは単純に凝集エネルギーEcohと同じになってしまいます。

凝集エネルギーと全エネルギー


凝集エネルギーとは、孤立原子のエネルギーを基準としたときの凝集状態のエネルギーのことです。別の言い方をするとfcc銅の凝集エネルギーは、fcc構造に結晶化した銅の原子を引き剥がして行って、孤立原子になるまでに必要とされるエネルギーという事になります。

これに対して、第一原理計算における全エネルギーも凝集状態のエネルギーであることは同じですが、その基準となるエネルギーに物理的な意味がない点が異なります。

冒頭に挙げたFig.1は、この事を模式的に表した図です。
Fig.1の例では、銅のようにfcc構造の方がhcp構造よりも安定な固体をイメージしています。

AkaiKKRでの計算


それでは実際にAkaiKKR(machikaneyama)で、fccとhcpの銅の全エネルギーを計算してみます。本当は格子定数やk点の数などに注意を払いながら計算しなければいけないのですが、以下のような簡単な入力ファイルを使う事にします。(参考: AkaiKKRで銅の格子定数)

c----------------------Cu------------------------------------
go data/fccCu
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
fcc 0 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 9 200 0.035
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Cu 1 1 0.0 2
29 100
c------------------------------------------------------------
c natm
1
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Cu
c------------------------------------------------------------


c----------------------Cu------------------------------------
go data/hcpCu
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
hcp 0 , , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 sra mjw nmag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 9 200 0.035
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Cu 1 1 0.0 2
29 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0 0 0 Cu
1/3a 2/3b 1/2c Cu
c------------------------------------------------------------


実際に計算するとfcc構造の全エネルギーは-3304.7481651 Ryとなり、hcp構造の全エネルギーは-6609.4943602 Ryと表示されます。hcp構造は計算セルに2個の原子を持っているので、原子一つ分なら2で割って -3304.7471801 Ryとなります。

これらの値は、それぞれを別々に見せられても、その値自体に物理的な意味は持っていません。しかしながら大小関係を比較することにより結晶構造の安定性を議論することができます。今回の場合は -3304.7481651 < -3304.7471801 なのでfcc構造の方が安定であるという事がわかります。

結晶構造の違いの他にも、格子定数や軸比(c/aなど)、内部自由度など色々なものが全エネルギーの比較から可能になります。

補足: 有限温度と有限圧力


ギブスの自由エネルギーを計算する際に、温度と圧力の効果を無視して凝集エネルギーとの比較だけを行いましたが、有限温度や有限圧力の効果も第一原理的に取り入れることは可能です。

実際、圧力の効果PVは簡単に取り入れられることがすぐに分かります。
有限温度の効果は、色々な近似を持ち込めば、何らかの値を出すことは可能です。AkaiKKRで金属の熱物性は、デバイ模型を用いた一例です。

関連エントリ




参考URL




参考文献/使用機器




フィードバック


にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama KKR 全エネルギー 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCOPアンプPICCPA強磁性モンテカルロ解析常微分方程式トランジスタode状態密度インターフェースDOSPDS5022ecaljスイッチング回路定電流半導体シェルスクリプトレベルシフト乱数HP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ