AkaiKKRの基本並進ベクトル その2

AkaiKKRの基本並進ベクトル その1の続きとして、六方最密充填構造(hcp)のコバルトの入力ファイルを基本並進ベクトルを用いて作成しました。基本並進ベクトルの指定の仕方は直交座標系で任意の回転をさせても変わらないので、色々な取り方があります。
今回は前回と比較してxy平面上で反時計回りに30°回転させた場合のファイルを作成してみました。


基本並進ベクトルと任意の回転


AkaiKKRの基本並進ベクトル その1ではAkaiKKR(machikaneyama)の入力ファイルで基本並進ベクトル利用して結晶構造を入力する方法を書きました。

この際、六方最密充填構造を例にとって、以下のような配置のコバルトの入力ファイルを作成しました。

001_20150513120148d3b.png


c----------------------Co------------------------------------
go data/coAUX
c------------------------------------------------------------
c brvtyp
aux
0.50000 -0.86603 0.00000
0.50000 0.86603 0.00000
0.00000 0.00000 1.62150
4.74
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 nrl mjw mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 50 0.023
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Co 1 1 0.0 2
27 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0a 0b 0c Co
1/3a 2/3b 1/2c Co
c------------------------------------------------------------


上記の例ではaベクトルとbベクトルの間にx軸が来るように基本並進ベクトルを選んでいますが、当然ながらほかの取り方もできます。例えばbベクトルがy軸方向に来るようにとると基本並進ベクトルは以下のようになります。

√3/2 -1/2 0
0 1 0
0 0 c/a

これに対応する入力ファイルは以下のようになります。

c----------------------Co------------------------------------
go data/coAUX
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
aux
0.86603 -0.50000 0.00000
0.00000 1.00000 0.00000
0.00000 0.00000 1.62150
4.74
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 nrl mjw mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 50 0.023
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Co 1 1 0.0 2
27 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0a 0b 0c Co
1/3a 2/3b 1/2c Co
c------------------------------------------------------------


上記2つの入力ファイルは、同じ結果が得られるはずです。

計算結果への影響


上記2つの入力ファイルは同じ結果が得られるはずですが、普通にブラべ格子をキーワードとしてhcpを与えたときと、上記のようにauxで基本並進ベクトルを指定した場合とでは、計算結果が異なる場合があります。

実際、下記はAkaiKKRのサンプル入力ファイルとしてinディレクトリに保存されているものですが、AkaiKKRのバージョンによっては下記は上手く収束しない場合があるのに反して、上記のauxで入力したファイルは上手く収束します。

c----------------------Co------------------------------------
go data/co
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
hcp 4.74 , 1.6215 , , , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.0 nrl mjw mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 50 0.023
c------------------------------------------------------------
c ntyp
1
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
Co 1 1 0.0 2
27 100
c------------------------------------------------------------
c natm
2
c------------------------------------------------------------
c atmicx atmtyp
0a 0b 0c Co
1/3a 2/3b 1/2c Co
c------------------------------------------------------------


ブラべ格子で指定する場合と基本並進ベクトルで指定する場合の違いというよりは、高い対称性を持ったブラべ格子で収束しづらい場合、対称性をおおとしたブラべ格子で計算を行うと収束しやすくなることがある気がします。対称性の高いブラべ格子を指定した場合の方が、内部的にポテンシャルの形状などに強い制約を与えているのかもしれません。気のせいかもしれませんが。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama KKR 基本並進ベクトル ブラべ格子 六方最密充填構造 コバルト 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性OPアンプPICCPAecaljモンテカルロ解析常微分方程式odeトランジスタ状態密度DOSインターフェース定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフト分散関係HP6632AI2C可変抵抗トランジスタ技術ブレッドボード温度解析R6452A反強磁性確率論バンドギャップセミナー数値積分熱設計非線形方程式ソルババンド構造絶縁偏微分方程式ISO-I2CLM358マフィンティン半径フォトカプラシュミットトリガカオスLED三端子レギュレータGW近似A/Dコンバータ発振回路PC817C直流動作点解析USBTL431数値微分アナログスイッチカレントミラー74HC4053サーボ量子力学単振り子チョッパアンプ補間2ちゃんねる開発環境bzqltyFFT電子負荷LDAイジング模型BSch基本並進ベクトルブラべ格子パラメトリック解析標準ロジックアセンブラ繰り返し六方最密充填構造SMPコバルトewidthFET仮想結晶近似QSGW不規則合金VCAMaximaGGA熱伝導cygwinスレーターポーリング曲線キュリー温度スイッチト・キャパシタ失敗談ランダムウォークgfortran抵抗相対論位相図スピン軌道相互作用VESTA状態方程式TLP621ラプラス方程式TLP552条件分岐NE555LM555TLP521マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測QNAPUPSWriter509ダイヤモンドデータロガー格子比熱熱力学起電力awkブラウン運動スーパーセルUbuntu差し込みグラフ第一原理計算フェルミ面fsolveCIFxcrysden最大値最小値ubuntu最適化平均場近似OpenMP井戸型ポテンシャル固有値問題シュレディンガー方程式TeX2SC1815結晶磁気異方性OPA2277フラクタルFSM固定スピンモーメントc/a非線型方程式ソルバgnuplot全エネルギーfcc初期値マンデルブロ集合縮退正規分布interp1ウィグナーザイツ胞L10構造multiplotフィルタ面心立方構造PGAハーフメタル二相共存ZnOウルツ鉱構造BaOSIC重積分磁気モーメント電荷密度化学反応クーロン散乱岩塩構造CapSenseノコギリ波デバイ模型キーボード半金属フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt合金Realforce軸ラベルグラフの分割凡例線種シンボルMAS830LCK1026LMC662PIC16F785トランス関数フィッティングトラックボールPC等価回路モデルヒストグラムパラメータ・モデル不規則局所モーメント最小二乗法TS-112TS-110直流解析ExcelGimp円周率片対数グラフ両対数グラフspecx.f疎行列三次元ifort文字列不純物問題P-10等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン入出力境界条件陰解法AACircuit熱拡散方程式HiLAPWMBEEAGLE連立一次方程式ナイキスト線図負帰還安定性Crank-Nicolson法日本語

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ