AkaiKKRのブラベ格子

結晶学において、三次元のブラべ格子は14種類存在します。
AkaiKKR(machikaneyama)でも結晶構造の指定にこのブラべ格子を利用し、入力ファイルでは各ブラべ格子に対応したキワードを用います。


プログラム内部では各キーワードに対応した番号が振られているようです。source/ibrava.fのコメントには、以下のように書かれています。

c-----------------------------------------------------------------------
c This program returns the index of the bravais lattice.
c (1)fcc (2)bcc (3)hcp(hex) (4)sc (5)bct (fct) (6)simple tetragonal
c (7)face centered orthorhombic (8)body centered orthorhombic
c (9)base centered orthorhonbic (10)simple orthorhombic
c (11)base centered monoclinic (12)simple monoclinic
c (13)triclinic (14)rhombohedral (trigonal) (15)fct (bct)
c (16)aux (primitive unit vector are to be read in)
c for a practical reason, fct and bct are treated differently.
c coded by H.Akai, April, 1992, Osaka
c revised 26 Dec. 1994, Osaka
c-----------------------------------------------------------------------


キーワード番号ブラべ格子Bravais lattice軸長軸間角度
fcc1面心立方face centered cubica=b=cα=β=γ=90°
bcc2体心立方body centered cubica=b=cα=β=γ=90°
hcp3六方最密hexagonal closed packeda=b≠cα=β=90°, γ=120°
sc4単純立方simple cubica=b=cα=β=γ=90°
bct5体心正方body centered tetragonala=b≠cα=β=γ=90°
st6単純正方simple tetragonala=b≠cα=β=γ=90°
fco7面心斜方face centered orthorhombica≠b≠cα=β=γ=90°
bco8体心斜方body centered orthorhombica≠b≠cα=β=γ=90°
bso9底心斜方base centered orthorhombica≠b≠cα=β=γ=90°
so10単純斜方simple orthorhombica≠b≠cα=β=γ=90°
bsm11底心単斜base centered monoclinica≠b≠cα=γ=90°≠β
sm12単純単斜simple monoclinica≠b≠cα=γ=90°≠β
trc13三斜triclinica≠b≠cα≠β≠γ≠90°
rhb14菱面体rhombohedrala=b=cα=β=γ≠90°
fct15面心正方face centered tetragonala=b≠cα=β=γ=90°
trg14三方trigonala=b=cα=β=γ≠90°
hex3六方hexagonala=b≠cα=β=90°, γ=120°
aux16


ブラべ格子は14種類しか存在しないはずなのに、キーワードは18種類存在します。
このことに関して順に見ていきます。

純金属の結晶構造はほとんどが面心立方構造(fcc)、体心立方構造(bcc)、六方最密充填構造(hcp)なので最初の3つは、これらの結晶構造を作るのに便利なブラべ格子が並んでいます。
ここで注意が必要なのは、本来、六方晶系には六方最密というブラべ格子は存在しないという事です。したがってAkaiKKRにおけるhcpというキーワードは、実は六方最密では無く、単純六方です。実際表の最後から2番目に単純六方を示すhexというキーワードが存在し、その番号はhcpと同じ3です。
ただ、やはりhcpやhexという単純六方のブラべ格子を表すキーワードは、六方最密充填構造という結晶構造を意識したもののようで、入力ファイルにおいて軸比c/aを省略すると、六方最密充填構造における理想値であるc/a=2*√2/√3=1.633が指定されるようです。

更に単純立方(simple cubic)、正方晶系(tetragonal)、斜方晶系(orthorhombic)、単斜晶系(monoclinic)、三斜(triclinic)と続きます。14番の菱面体構造(rhombohedral)は三方晶(trigonal)と同じです。ここまでが14種類の独立なブラべ格子です。面心正方(face centered tetragonal)は体心正方(body centered tetragonal)と等価なブラべ格子ですが、AkaiKKRでは別物として分けてあるようです。

最後に、ブラべ格子ではなく基本ベクトルで結晶構造を指定するためにauxというキーワードが用意されています。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama ブラべ格子 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性OPアンプPICCPA常微分方程式モンテカルロ解析ecaljodeトランジスタ状態密度インターフェースDOS定電流スイッチング回路PDS5022半導体シェルスクリプトレベルシフト乱数HP6632AR6452AI2C可変抵抗分散関係トランジスタ技術ブレッドボード温度解析反強磁性確率論バンドギャップセミナー数値積分熱設計非線形方程式ソルババンド構造絶縁偏微分方程式ISO-I2CLM358フォトカプラ三端子レギュレータカオスLEDシュミットトリガGW近似A/Dコンバータ発振回路PC817C直流動作点解析USBマフィンティン半径数値微分アナログスイッチTL43174HC4053カレントミラーサーボ量子力学単振り子チョッパアンプ補間2ちゃんねる開発環境bzqltyFFT電子負荷LDAイジング模型BSch基本並進ベクトルブラべ格子パラメトリック解析標準ロジックアセンブラ繰り返し六方最密充填構造SMPコバルトewidthFET仮想結晶近似QSGW不規則合金VCAMaximaGGA熱伝導cygwinスレーターポーリング曲線キュリー温度スイッチト・キャパシタ失敗談ランダムウォークgfortran抵抗相対論位相図スピン軌道相互作用VESTA状態方程式TLP621ラプラス方程式TLP552条件分岐NE555LM555TLP521マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測QNAPUPSWriter509ダイヤモンドデータロガー格子比熱熱力学awkブラウン運動起電力スーパーセル差し込みグラフ第一原理計算フェルミ面fsolve最大値xcrysden最小値最適化ubuntu平均場近似OpenMP井戸型ポテンシャルシュレディンガー方程式固有値問題2SC1815結晶磁気異方性OPA2277非線型方程式ソルバTeXgnuplot固定スピンモーメントFSMPGAc/a全エネルギーfccフラクタルマンデルブロ集合正規分布縮退初期値interp1multiplotフィルタ面心立方構造ウィグナーザイツ胞L10構造半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度化学反応CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタルキーボードフォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt合金等高線線種凡例シンボルトラックボールPC軸ラベルグラフの分割トランス文字列CK1026MAS830L直流解析Excel不規則局所モーメントパラメータ・モデル入出力日本語最小二乗法等価回路モデルヒストグラムGimp円周率TS-110TS-112PIC16F785LMC662三次元specx.fifortUbuntu疎行列不純物問題Realforceジバニャン方程式ヒストグラム確率論マテリアルデザインP-10境界条件連立一次方程式熱拡散方程式AACircuitHiLAPW両対数グラフ片対数グラフ陰解法MBEナイキスト線図負帰還安定性Crank-Nicolson法EAGLE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ