AkaiKKRのブラベ格子

結晶学において、三次元のブラべ格子は14種類存在します。
AkaiKKR(machikaneyama)でも結晶構造の指定にこのブラべ格子を利用し、入力ファイルでは各ブラべ格子に対応したキワードを用います。


プログラム内部では各キーワードに対応した番号が振られているようです。source/ibrava.fのコメントには、以下のように書かれています。

c-----------------------------------------------------------------------
c This program returns the index of the bravais lattice.
c (1)fcc (2)bcc (3)hcp(hex) (4)sc (5)bct (fct) (6)simple tetragonal
c (7)face centered orthorhombic (8)body centered orthorhombic
c (9)base centered orthorhonbic (10)simple orthorhombic
c (11)base centered monoclinic (12)simple monoclinic
c (13)triclinic (14)rhombohedral (trigonal) (15)fct (bct)
c (16)aux (primitive unit vector are to be read in)
c for a practical reason, fct and bct are treated differently.
c coded by H.Akai, April, 1992, Osaka
c revised 26 Dec. 1994, Osaka
c-----------------------------------------------------------------------


キーワード番号ブラべ格子Bravais lattice軸長軸間角度
fcc1面心立方face centered cubica=b=cα=β=γ=90°
bcc2体心立方body centered cubica=b=cα=β=γ=90°
hcp3六方最密hexagonal closed packeda=b≠cα=β=90°, γ=120°
sc4単純立方simple cubica=b=cα=β=γ=90°
bct5体心正方body centered tetragonala=b≠cα=β=γ=90°
st6単純正方simple tetragonala=b≠cα=β=γ=90°
fco7面心斜方face centered orthorhombica≠b≠cα=β=γ=90°
bco8体心斜方body centered orthorhombica≠b≠cα=β=γ=90°
bso9底心斜方base centered orthorhombica≠b≠cα=β=γ=90°
so10単純斜方simple orthorhombica≠b≠cα=β=γ=90°
bsm11底心単斜base centered monoclinica≠b≠cα=γ=90°≠β
sm12単純単斜simple monoclinica≠b≠cα=γ=90°≠β
trc13三斜triclinica≠b≠cα≠β≠γ≠90°
rhb14菱面体rhombohedrala=b=cα=β=γ≠90°
fct15面心正方face centered tetragonala=b≠cα=β=γ=90°
trg14三方trigonala=b=cα=β=γ≠90°
hex3六方hexagonala=b≠cα=β=90°, γ=120°
aux16


ブラべ格子は14種類しか存在しないはずなのに、キーワードは18種類存在します。
このことに関して順に見ていきます。

純金属の結晶構造はほとんどが面心立方構造(fcc)、体心立方構造(bcc)、六方最密充填構造(hcp)なので最初の3つは、これらの結晶構造を作るのに便利なブラべ格子が並んでいます。
ここで注意が必要なのは、本来、六方晶系には六方最密というブラべ格子は存在しないという事です。したがってAkaiKKRにおけるhcpというキーワードは、実は六方最密では無く、単純六方です。実際表の最後から2番目に単純六方を示すhexというキーワードが存在し、その番号はhcpと同じ3です。
ただ、やはりhcpやhexという単純六方のブラべ格子を表すキーワードは、六方最密充填構造という結晶構造を意識したもののようで、入力ファイルにおいて軸比c/aを省略すると、六方最密充填構造における理想値であるc/a=2*√2/√3=1.633が指定されるようです。

更に単純立方(simple cubic)、正方晶系(tetragonal)、斜方晶系(orthorhombic)、単斜晶系(monoclinic)、三斜(triclinic)と続きます。14番の菱面体構造(rhombohedral)は三方晶(trigonal)と同じです。ここまでが14種類の独立なブラべ格子です。面心正方(face centered tetragonal)は体心正方(body centered tetragonal)と等価なブラべ格子ですが、AkaiKKRでは別物として分けてあるようです。

最後に、ブラべ格子ではなく基本ベクトルで結晶構造を指定するためにauxというキーワードが用意されています。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama ブラべ格子 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度常微分方程式モンテカルロ解析トランジスタodeDOSインターフェーススイッチング回路定電流PDS5022分散関係半導体シェルスクリプト乱数レベルシフトHP6632A温度解析ブレッドボード可変抵抗I2Cトランジスタ技術R6452A確率論バンド構造セミナーバンドギャップ反強磁性数値積分熱設計絶縁非線形方程式ソルバ偏微分方程式PWscfA/Dコンバータマフィンティン半径フォトカプラカオスISO-I2CGW近似LM358LEDシュミットトリガ三端子レギュレータ74HC4053アナログスイッチUSBサーボ数値微分直流動作点解析補間カレントミラーTL431PC817C発振回路FFT電子負荷VESTA開発環境量子力学単振り子bzqlty基本並進ベクトル2ちゃんねるチョッパアンプ標準ロジックパラメトリック解析アセンブラブラべ格子BSchQuantumESPRESSOイジング模型LDA状態方程式GGA仮想結晶近似VCA熱伝導SMPスイッチト・キャパシタキュリー温度Quantum_ESPRESSOスーパーリーグTLP621トレーナーバトルewidth最適化Maxima抵抗失敗談相対論コバルト繰り返し位相図六方最密充填構造ポケモンGOスピン軌道相互作用gfortranランダムウォークFETスレーターポーリング曲線cygwinQSGW不規則合金ラプラス方程式MCU条件分岐データロガーマントルUPS固有値問題格子比熱シュレディンガー方程式熱力学詰め回路ガイガー管QNAP井戸型ポテンシャルダイヤモンドOpenMPTLP521ハーフメタルLM555ubuntu平均場近似ブラウン運動フェルミ面NE555ZnOゼーベック係数TLP552xcrysdenCIF最小値最大値awkfsolveテスタ第一原理計算Ubuntu差し込みグラフFXA-7020ZR三角波過渡解析Writer509自動計測スーパーセル起電力トランスCK1026MAS830LフィルタPGAP-10MBEOPA2277ナイキスト線図ノコギリ波AACircuitEAGLE2SC1815PIC16F785LMC662CapSense負帰還安定性入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分SIC不純物問題擬ポテンシャル状態図cif2cellPWgui二相共存ウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列不規則局所モーメント陰解法熱拡散方程式HiLAPWCrank-Nicolson法連立一次方程式specx.fifort境界条件両対数グラフ片対数グラフGimp円周率ヒストグラムシンボル線種グラフの分割軸ラベル凡例トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ