Scilabで数値微分 その4

Scilabで数値微分 その1, その2で行った誤差の議論を、誤差の最大値と誤差の平均値について行いました。

こういう議論に意味があるかはわかりませんが。


Scilabで数値微分 その1, その2ではsin(x)のx=0.3πのときの微分値を数値計算するに際して、差分の刻み幅を変えた際に数値計算の誤差(丸め誤差、打切り誤差)がどのように影響するかについて調べました。
今回はxを1から2πの範囲で微分値を計算し、差分の刻み幅を変えた際に数値計算の誤差の平均値や最大値への影響を調べます。

001_20150405230943e9c.png
Fig.1: 数値微分と解析解の比較(丸は誤差の平均値、四角は誤差の最大値)

002_201504052309435a9.png
Fig.2: 数値微分の刻み幅を2倍にした時の変化の度合い(丸は誤差の平均値、四角は誤差の最大値)


Scilabのスクリプトはdiff3.sceです。Scilabで数値微分 その3で作成したdifferential.sciが同じディレクトリにある必要があります。

clear;

// *** 関数の定義を読み出し ***
exec('differential.sci',0);

// *** 計算の設定 ***
xmin = 0;
xmax = 2 * %pi;
x = linspace(xmin,xmax);
dy = cos(x); // 解析解
N = [0:1:50]'; // 刻み幅

// *** 数値微分 ***
for i = 1:length(N)
// 刻み幅
n = N(i);
dx = 1 / 2 ^ n;
// 前進差分
dyf1 = diff_f1(x, dx, sin);
dyf12 = diff_f1(x, 2 * dx, sin);
ERRmeanf1(i) = mean(abs(dy - dyf1));
ERRmaxf1(i) = max(abs(dy - dyf1));
DIFmeanf1(i) = mean(abs(dyf12 - dyf1));
DIFmaxf1(i) = max(abs(dyf12 - dyf1));
// 中心差分
dyf2 = diff_f2(x, dx, sin);
dyf22 = diff_f2(x, 2 * dx, sin);
ERRmeanf2(i) = mean(abs(dy - dyf2));
ERRmaxf2(i) = max(abs(dy - dyf2));
DIFmeanf2(i) = mean(abs(dyf22 - dyf2));
DIFmaxf2(i) = max(abs(dyf22 - dyf2));
// 前進差分に対するRomberg1段
dyf1r = diff_f1r(x, dx, sin);
dyf1r2 = diff_f1r(x, 2 * dx, sin);
ERRmeanf1r(i) = mean(abs(dy - dyf1r));
ERRmaxf1r(i) = max(abs(dy - dyf1r));
DIFmeanf1r(i) = mean(abs(dyf1r2 - dyf1r));
DIFmaxf1r(i) = max(abs(dyf1r2 - dyf1r));
// 中心差分に対するRomberg1段
dyf2r = diff_f2r(x, dx, sin);
dyf2r2 = diff_f2r(x, 2 * dx, sin);
ERRmeanf2r(i) = mean(abs(dy - dyf2r));
ERRmaxf2r(i) = max(abs(dy - dyf2r));
DIFmeanf2r(i) = mean(abs(dyf2r2 - dyf2r));
DIFmaxf2r(i) = max(abs(dyf2r2 - dyf2r));
end

// *** グラフのプロット ***
// *** 誤差のプロット ***
scf(0);
a = gca();
a.data_bounds = [min(N),1E-14; max(N),1];
a.log_flags = "nl";
// 誤差の平均値
plot(N, ERRmeanf1, '-or'); // 前進差分
plot(N, ERRmeanf2, '-om'); // 中心差分
plot(N, ERRmeanf1r, '-ob'); // 前進差分に対するRomberg1段
plot(N, ERRmeanf2r, '-og'); // 中心差分に対するRomberg1段
// 誤差の最大値
plot(N, ERRmaxf1, '-sr'); // 前進差分
plot(N, ERRmaxf2, '-sm'); // 中心差分
plot(N, ERRmaxf1r, '-sb'); // 前進差分に対するRomberg1段
plot(N, ERRmaxf2r, '-sg'); // 中心差分に対するRomberg1段
// *** 刻み幅を変えた際の値の変化 ***
scf(1);
a = gca();
a.data_bounds = [min(N),1E-14; max(N),1];
a.log_flags = "nl";
// 差の平均値
plot(N, DIFmeanf1, '-or'); // 前進差分
plot(N, DIFmeanf2, '-om'); // 中心差分
plot(N, DIFmeanf1r, '-ob'); // 前進差分に対するRomberg1段
plot(N, DIFmeanf2r, '-og'); // 中心差分に対するRomberg1段
// 差の最大値
plot(N, DIFmaxf1, '-sr'); // 前進差分
plot(N, DIFmaxf2, '-sm'); // 中心差分
plot(N, DIFmaxf1r, '-sb'); // 前進差分に対するRomberg1段
plot(N, DIFmaxf2r, '-sg'); // 中心差分に対するRomberg1段


関連エントリ




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 数値微分 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ