Scilabでイジング模型 その2

計算物理学 応用編ising.cをScilabへ移植しました。

001_20141201124503785.png

Fig.1: 一次元のイジングモデル。コールドスタートから磁区が発達していく様子が再現されている。(n=100, kt=1.5, J=1, tmax=1000)


その結果、交換エネルギーJの符号によって強磁性状態や反強磁性状態が安定になることが確認できました。


一次元のイジング模型


一次元のリング状に原子(磁気双極子)が等間隔で並んでいる一次元結晶を考えます。それぞれの原子がもつ磁気双極子は、三次元空間では、さまざまな方向を向く可能性がありますが、一次元空間の場合は、方向が正と負しかないので、上向きと下向きの2種類のスピンのみを考えます。するとi番目の粒子がもつスピンは+1と-1のどちらかを取るとして si = ±1 と書くことができます。

リンク状の一次元結晶にN個の原子があるとすると、一次元結晶全体のスピンの配置は

j> = |s1, s2, ..., sN>
= {±1, ±1, ... ±1} (j = 1, 2, 3, ... 2N)

という量子状態ベクトルで表すことができます。

具体的に N=3 の場合に書き下してみます。

1> = {-1, -1, -1}
2> = {-1, -1, +1}
3> = {-1, +1, -1}
4> = {-1, +1, +1}
5> = {+1, -1, -1}
6> = {+1, -1, +1}
7> = {+1, +1, -1}
8> = {+1, +1, +1}

以上のようにN=3のときには23=8種類の状態を取りうることがわかります。
イジング模型では、隣り合う原子だけが相互作用すると考えます。相互作用のパラメータをJとすると、外部磁場がない場合、ある状態αjにおけるエネルギーは

E( \alpha_j ) = - J \sum_{i=1}^{N-1}s_i s_j


この式をすべてのαjに関して計算すればよいことになります。とは言うものの、原子の数がN=3ならば状態の種類が8種類しか存在しないので、すべてを計算することも可能でしょうが、N=100などになってしまうと2100≒1.26*1030となり、とてもすべてを計算するのは現実的ではありません。このため、数値シミュレーションでは乱数を使って計算を行います。

メトロポリスのアルゴリズム


詳しいアルゴリズムの説明は計算物理学 応用編の通りですが、その中のising.cまたはising.fをScilabに移植します。

clear;

// *** 定数の設定 ***
n = 100; // 粒子の数
kt = 1.5; // 温度
J = 1; // 交換エネルギー (1: 強磁性, -1:反強磁性)
rand("uniform"); // 乱数は一様乱数とする
tmax = 1000; // 時間の最大ステップ

// *** 初期化 ***
// 各粒子におけるスピン
spin = ones(1,n); // コールドスタート
//spin = 1 - 2 * round(rand(1,n)); // 乱数スタート

// *** エネルギーの計算関数 ***
function e = energy(spin)
e = - J * sum(spin .* [spin(2:n), spin(1)]);
endfunction

SPIN = [];

// *** 時間発展 ***
for t = 1:tmax do
oldenergy = energy(spin);
element = ceil(n * rand()); // 粒子を一つ選ぶ
spin(element) = -1 * spin(element); // スピンを反転
newenergy = energy(spin);
spin(element) = (- 2 * ((newenergy > oldenergy) & (exp((- newenergy + oldenergy) / kt) <= rand())) + 1) * spin(element);
// 時刻tにおけるスピンを保存
SPIN = [SPIN;spin];
end

// *** スピンの時間変化をプロット ***
Matplot((SPIN' + 1) .* 10);
zoom_rect([0,0,tmax,n]);
xlabel("Time");
ylabel("Position");


反強磁性状態の計算


交換エネルギーを負にとると、反強磁性状態になります。

002_2014120112573532a.png
Fig.2: 反強磁性状態


関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 確率論 乱数 イジング模型 モンテカルロ解析 強磁性 反強磁性 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj常微分方程式モンテカルロ解析状態密度トランジスタodeDOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト分散関係レベルシフト乱数HP6632AR6452A可変抵抗トランジスタ技術温度解析ブレッドボードI2C反強磁性確率論数値積分セミナーバンドギャップバンド構造偏微分方程式非線形方程式ソルバ熱設計絶縁ISO-I2Cカオス三端子レギュレータLM358GW近似マフィンティン半径A/DコンバータフォトカプラシュミットトリガLEDPC817C発振回路数値微分直流動作点解析サーボカレントミラーTL431アナログスイッチUSB74HC4053bzqltyVESTA補間電子負荷アセンブライジング模型BSch量子力学単振り子2ちゃんねるチョッパアンプLDA開発環境基本並進ベクトルFFT標準ロジックブラべ格子パラメトリック解析抵抗SMPMaxima失敗談ラプラス方程式繰り返し位相図スイッチト・キャパシタ熱伝導状態方程式キュリー温度gfortranコバルトTLP621不規則合金Quantum_ESPRESSO六方最密充填構造ランダムウォーク相対論ewidthスピン軌道相互作用FETQSGWVCAcygwinスレーターポーリング曲線GGA仮想結晶近似PWscfシュレディンガー方程式LM555ハーフメタル固有値問題NE555最小値ガイガー管QNAPUPS自動計測ダイヤモンドマントルTLP552格子比熱最適化MCU井戸型ポテンシャル最大値xcrysdenCIF条件分岐詰め回路フェルミ面差し込みグラフスーパーセルfsolveブラウン運動awk過渡解析起電力三角波第一原理計算FXA-7020ZRWriter509Ubuntuテスタ熱力学データロガーTLP521OpenMPubuntu平均場近似MAS830LトランスCK1026PIC16F785PGA2SC1815EAGLEノコギリ波負帰還安定性ナイキスト線図MBEOPA2277P-10フィルタCapSenseAACircuitLMC662文字列固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型電荷密度重積分SIC二相共存磁気モーメント不純物問題PWgui擬ポテンシャルゼーベック係数ZnOウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデルcif2cell入出力陰解法熱拡散方程式HiLAPW両対数グラフCrank-Nicolson法連立一次方程式specx.fifort境界条件片対数グラフグラフの分割円周率ヒストグラム不規則局所モーメントGimpシンボル軸ラベル凡例線種トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ