Scilabでイジング模型 その2

計算物理学 応用編ising.cをScilabへ移植しました。

001_20141201124503785.png

Fig.1: 一次元のイジングモデル。コールドスタートから磁区が発達していく様子が再現されている。(n=100, kt=1.5, J=1, tmax=1000)


その結果、交換エネルギーJの符号によって強磁性状態や反強磁性状態が安定になることが確認できました。


一次元のイジング模型


一次元のリング状に原子(磁気双極子)が等間隔で並んでいる一次元結晶を考えます。それぞれの原子がもつ磁気双極子は、三次元空間では、さまざまな方向を向く可能性がありますが、一次元空間の場合は、方向が正と負しかないので、上向きと下向きの2種類のスピンのみを考えます。するとi番目の粒子がもつスピンは+1と-1のどちらかを取るとして si = ±1 と書くことができます。

リンク状の一次元結晶にN個の原子があるとすると、一次元結晶全体のスピンの配置は

j> = |s1, s2, ..., sN>
= {±1, ±1, ... ±1} (j = 1, 2, 3, ... 2N)

という量子状態ベクトルで表すことができます。

具体的に N=3 の場合に書き下してみます。

1> = {-1, -1, -1}
2> = {-1, -1, +1}
3> = {-1, +1, -1}
4> = {-1, +1, +1}
5> = {+1, -1, -1}
6> = {+1, -1, +1}
7> = {+1, +1, -1}
8> = {+1, +1, +1}

以上のようにN=3のときには23=8種類の状態を取りうることがわかります。
イジング模型では、隣り合う原子だけが相互作用すると考えます。相互作用のパラメータをJとすると、外部磁場がない場合、ある状態αjにおけるエネルギーは

E( \alpha_j ) = - J \sum_{i=1}^{N-1}s_i s_j


この式をすべてのαjに関して計算すればよいことになります。とは言うものの、原子の数がN=3ならば状態の種類が8種類しか存在しないので、すべてを計算することも可能でしょうが、N=100などになってしまうと2100≒1.26*1030となり、とてもすべてを計算するのは現実的ではありません。このため、数値シミュレーションでは乱数を使って計算を行います。

メトロポリスのアルゴリズム


詳しいアルゴリズムの説明は計算物理学 応用編の通りですが、その中のising.cまたはising.fをScilabに移植します。

clear;

// *** 定数の設定 ***
n = 100; // 粒子の数
kt = 1.5; // 温度
J = 1; // 交換エネルギー (1: 強磁性, -1:反強磁性)
rand("uniform"); // 乱数は一様乱数とする
tmax = 1000; // 時間の最大ステップ

// *** 初期化 ***
// 各粒子におけるスピン
spin = ones(1,n); // コールドスタート
//spin = 1 - 2 * round(rand(1,n)); // 乱数スタート

// *** エネルギーの計算関数 ***
function e = energy(spin)
e = - J * sum(spin .* [spin(2:n), spin(1)]);
endfunction

SPIN = [];

// *** 時間発展 ***
for t = 1:tmax do
oldenergy = energy(spin);
element = ceil(n * rand()); // 粒子を一つ選ぶ
spin(element) = -1 * spin(element); // スピンを反転
newenergy = energy(spin);
spin(element) = (- 2 * ((newenergy > oldenergy) & (exp((- newenergy + oldenergy) / kt) <= rand())) + 1) * spin(element);
// 時刻tにおけるスピンを保存
SPIN = [SPIN;spin];
end

// *** スピンの時間変化をプロット ***
Matplot((SPIN' + 1) .* 10);
zoom_rect([0,0,tmax,n]);
xlabel("Time");
ylabel("Position");


反強磁性状態の計算


交換エネルギーを負にとると、反強磁性状態になります。

002_2014120112573532a.png
Fig.2: 反強磁性状態


関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 確率論 乱数 イジング模型 モンテカルロ解析 強磁性 反強磁性 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性OPアンプPICCPA常微分方程式モンテカルロ解析ecaljodeトランジスタ状態密度インターフェースDOS定電流スイッチング回路PDS5022半導体シェルスクリプトレベルシフト乱数HP6632AR6452AI2C可変抵抗分散関係トランジスタ技術ブレッドボード温度解析反強磁性確率論バンドギャップセミナー数値積分熱設計非線形方程式ソルババンド構造絶縁偏微分方程式ISO-I2CLM358フォトカプラ三端子レギュレータカオスLEDシュミットトリガGW近似A/Dコンバータ発振回路PC817C直流動作点解析USBマフィンティン半径数値微分アナログスイッチTL43174HC4053カレントミラーサーボ量子力学単振り子チョッパアンプ補間2ちゃんねる開発環境bzqltyFFT電子負荷LDAイジング模型BSch基本並進ベクトルブラべ格子パラメトリック解析標準ロジックアセンブラ繰り返し六方最密充填構造SMPコバルトewidthFET仮想結晶近似QSGW不規則合金VCAMaximaGGA熱伝導cygwinスレーターポーリング曲線キュリー温度スイッチト・キャパシタ失敗談ランダムウォークgfortran抵抗相対論位相図スピン軌道相互作用VESTA状態方程式TLP621ラプラス方程式TLP552条件分岐NE555LM555TLP521マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測QNAPUPSWriter509ダイヤモンドデータロガー格子比熱熱力学awkブラウン運動起電力スーパーセル差し込みグラフ第一原理計算フェルミ面fsolveCIFxcrysden最大値最小値ubuntu最適化平均場近似OpenMPシュレディンガー方程式固有値問題井戸型ポテンシャル2SC1815TeX結晶磁気異方性OPA2277非線型方程式ソルバフラクタルFSM固定スピンモーメントc/agnuplotPGA全エネルギーfccマンデルブロ集合縮退正規分布キーボード初期値interp1multiplotフィルタ面心立方構造ウィグナーザイツ胞L10構造半金属二相共存ZnOウルツ鉱構造BaOSIC重積分磁気モーメント電荷密度化学反応クーロン散乱岩塩構造CapSenseノコギリ波デバイ模型ハーフメタルRealforceフォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt合金等高線凡例軸ラベル線種シンボルトラックボールグラフの分割MAS830LPIC16F785トランス入出力CK1026PC直流解析パラメータ・モデル等価回路モデル不規則局所モーメント関数フィッティング日本語ヒストグラムTS-112ExcelGimp円周率TS-110LMC662片対数グラフ三次元specx.fifortUbuntu文字列疎行列不純物問題ジバニャン方程式ヒストグラム確率論マテリアルデザインP-10境界条件連立一次方程式AACircuit熱拡散方程式HiLAPW両対数グラフ陰解法MBEナイキスト線図負帰還安定性Crank-Nicolson法EAGLE最小二乗法

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ