Scilabでイジング模型 その2

計算物理学 応用編ising.cをScilabへ移植しました。

001_20141201124503785.png

Fig.1: 一次元のイジングモデル。コールドスタートから磁区が発達していく様子が再現されている。(n=100, kt=1.5, J=1, tmax=1000)


その結果、交換エネルギーJの符号によって強磁性状態や反強磁性状態が安定になることが確認できました。


一次元のイジング模型


一次元のリング状に原子(磁気双極子)が等間隔で並んでいる一次元結晶を考えます。それぞれの原子がもつ磁気双極子は、三次元空間では、さまざまな方向を向く可能性がありますが、一次元空間の場合は、方向が正と負しかないので、上向きと下向きの2種類のスピンのみを考えます。するとi番目の粒子がもつスピンは+1と-1のどちらかを取るとして si = ±1 と書くことができます。

リンク状の一次元結晶にN個の原子があるとすると、一次元結晶全体のスピンの配置は

j> = |s1, s2, ..., sN>
= {±1, ±1, ... ±1} (j = 1, 2, 3, ... 2N)

という量子状態ベクトルで表すことができます。

具体的に N=3 の場合に書き下してみます。

1> = {-1, -1, -1}
2> = {-1, -1, +1}
3> = {-1, +1, -1}
4> = {-1, +1, +1}
5> = {+1, -1, -1}
6> = {+1, -1, +1}
7> = {+1, +1, -1}
8> = {+1, +1, +1}

以上のようにN=3のときには23=8種類の状態を取りうることがわかります。
イジング模型では、隣り合う原子だけが相互作用すると考えます。相互作用のパラメータをJとすると、外部磁場がない場合、ある状態αjにおけるエネルギーは

E( \alpha_j ) = - J \sum_{i=1}^{N-1}s_i s_j


この式をすべてのαjに関して計算すればよいことになります。とは言うものの、原子の数がN=3ならば状態の種類が8種類しか存在しないので、すべてを計算することも可能でしょうが、N=100などになってしまうと2100≒1.26*1030となり、とてもすべてを計算するのは現実的ではありません。このため、数値シミュレーションでは乱数を使って計算を行います。

メトロポリスのアルゴリズム


詳しいアルゴリズムの説明は計算物理学 応用編の通りですが、その中のising.cまたはising.fをScilabに移植します。

clear;

// *** 定数の設定 ***
n = 100; // 粒子の数
kt = 1.5; // 温度
J = 1; // 交換エネルギー (1: 強磁性, -1:反強磁性)
rand("uniform"); // 乱数は一様乱数とする
tmax = 1000; // 時間の最大ステップ

// *** 初期化 ***
// 各粒子におけるスピン
spin = ones(1,n); // コールドスタート
//spin = 1 - 2 * round(rand(1,n)); // 乱数スタート

// *** エネルギーの計算関数 ***
function e = energy(spin)
e = - J * sum(spin .* [spin(2:n), spin(1)]);
endfunction

SPIN = [];

// *** 時間発展 ***
for t = 1:tmax do
oldenergy = energy(spin);
element = ceil(n * rand()); // 粒子を一つ選ぶ
spin(element) = -1 * spin(element); // スピンを反転
newenergy = energy(spin);
spin(element) = (- 2 * ((newenergy > oldenergy) & (exp((- newenergy + oldenergy) / kt) <= rand())) + 1) * spin(element);
// 時刻tにおけるスピンを保存
SPIN = [SPIN;spin];
end

// *** スピンの時間変化をプロット ***
Matplot((SPIN' + 1) .* 10);
zoom_rect([0,0,tmax,n]);
xlabel("Time");
ylabel("Position");


反強磁性状態の計算


交換エネルギーを負にとると、反強磁性状態になります。

002_2014120112573532a.png
Fig.2: 反強磁性状態


関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 確率論 乱数 イジング模型 モンテカルロ解析 強磁性 反強磁性 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCCPAOPアンプPIC強磁性常微分方程式モンテカルロ解析トランジスタode状態密度DOSインターフェースecaljスイッチング回路定電流PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析可変抵抗I2Cブレッドボード分散関係トランジスタ技術R6452A数値積分反強磁性バンドギャップ確率論セミナー絶縁偏微分方程式非線形方程式ソルババンド構造熱設計カオスA/DコンバータISO-I2Cフォトカプラ三端子レギュレータシュミットトリガLEDGW近似LM358アナログスイッチ数値微分TL43174HC4053マフィンティン半径発振回路サーボ直流動作点解析カレントミラーPC817CUSB単振り子bzqlty開発環境BSch2ちゃんねる電子負荷イジング模型LDAチョッパアンプ量子力学補間アセンブラFFTブラべ格子標準ロジックパラメトリック解析基本並進ベクトルewidthキュリー温度QSGWGGA失敗談MaximaSMPTLP621スイッチト・キャパシタ熱伝導コバルト相対論スピン軌道相互作用六方最密充填構造繰り返しFETランダムウォークcygwingfortran不規則合金状態方程式ラプラス方程式抵抗スレーターポーリング曲線位相図格子比熱マントルデータロガー自動計測ダイヤモンドガイガー管QNAPUPS固有値問題条件分岐井戸型ポテンシャルシュレディンガー方程式詰め回路MCU第一原理計算起電力熱力学スーパーセルVCALM555仮想結晶近似awkTLP521NE555ubuntufsolveブラウン運動OpenMPVESTA最大値テスタ差し込みグラフFXA-7020ZRWriter509三角波TLP552平均場近似最適化最小値過渡解析LMC662トランスPIC16F785CapSenseMBEナイキスト線図CK1026フィルタP-10負帰還安定性EAGLEAACircuit2SC1815OPA2277PGAノコギリ波縮退非線型方程式ソルバL10構造fcc面心立方構造結晶磁気異方性TeX全エネルギー固定スピンモーメントFSMウィグナーザイツ胞interp1ヒストグラム確率論マテリアルデザインspecx.fジバニャン方程式等高線初期値フェルミ面正規分布c/agnuplotBaO岩塩構造ルチル構造ウルツ鉱構造ZnO重積分SIC二相共存スワップ領域リジッドバンド模型半金属合金multiplotハーフメタルデバイ模型edeltquantumESPRESSOフォノンifortUbuntuマンデルブロ集合キーボードRealforce関数フィッティングフラクタルクーロン散乱CIF化学反応三次元最小二乗法日本語直流解析PCトラックボールExcelTS-110パラメータ・モデル等価回路モデルTS-112疎行列文字列HiLAPW両対数グラフ片対数グラフ熱拡散方程式陰解法境界条件連立一次方程式Crank-Nicolson法グラフの分割軸ラベルヒストグラム不規則局所モーメント入出力円周率Gimp凡例線種シンボルMAS830L

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ