Scilabでイジング模型 その1

微分方程式による物理現象のモデル化(PDF)の熱統計力学の章にある一次元イジングモデルのOctaveのプログラムをScilabへ移植しました。

001_20141130214554d90.png

Fig.1: 一次元のイジングモデル



Scilabでモンテカルロシミュレーション


常微分方程式タグを付けたエントリでは、微分方程式による物理現象のモデル化(PDF)で紹介されているOctaveによる常微分方程式のプログラムをScilabへ移植するという事を行ってきました。Scilabで乱数の生成からのいくつかのエントリでは、微分方程式による物理現象のモデル化(PDF)の熱統計力学の章に入るに際して、Scilabで楽しむ確率論(PDF)Scilabで乱数を扱う方法に触れました。

今回は、また微分方程式による物理現象のモデル化(PDF)に戻り、イジング模型のScilabシミュレーションを行います。
ただし、今回は微分方程式による物理現象のモデル化(PDF)のスクリプトを単純にScilabで実行できるように書き直しただけにしておきます。正直なところ微分方程式による物理現象のモデル化(PDF)の内容だけでは、何の計算をしているのかを理解することは困難です。おそらく元ネタと思われる計算物理学 応用編の併読が必須と思われます。

clear;

N = 200; // 粒子数
J = 1; // 交換相互作用
H = 0.0; // 外部磁界
im = [0:N - 1];
im(1) = N;
ip = [2:N + 1];
ip(N) = 1;
Neq = 5 * N;
Samp = 200;
DIV = 19;

rand("uniform"); // 乱数は一様乱数とする
spin = ones(1,N); // スピン
T = linspace(0.5,5,DIV); // 温度

// *** モンテカルロ計算 ***
for kt = 1:DIV do
// エネルギー
e1 = 0;
e2 = 0;
mag1 = 0;
mag2 = 0;
for ks = 1:Samp do
for kq = 1:Neq do
is = ceil(N * rand());
de = J * 2 * spin(is) * (spin(im(is)) + spin(ip(is)));
if de > 0 & exp(- de / T(kt)) < rand() then
spin(is) = 1 * spin(is);
else
spin(is) = -1 * spin(is);
end
end
mag1 = mag1 + sum(spin);
mag2 = mag2 + sum(spin) ^ 2;
e1 = e1 - J * (spin * [spin(2:$),spin(1)]');
e2 = e2 + (J * (spin * [spin(2:$),spin(1)]')) ^ 2;
end
M(kt) = mag1 / Samp;
M2(kt) = mag2 / Samp;
E(kt) = e1 / Samp;
E2(kt) = e2 / Samp;
X(kt) = (M2(kt) - M(kt) .^ 2) ./ T(kt) / N;
C(kt) = (E2(kt) - E(kt) .^ 2) ./ T(kt) .^ 2 / N;
end
// 磁気感受率の逆数
RX = 1 ./ X;

// *** 厳密解の計算 ***
// 温度ベクトル
Ta = linspace(0.1,5,50);
// 粒子1個あたりの平均エネルギー
Ea = - tanh(J ./ Ta);
// 比熱
Ca = (J ./ Ta) .^ 2 ./ cosh(J ./ Ta) .^ 2;
// 磁化
Ma = sinh(H ./ Ta) ./ sqrt(sinh(H ./ Ta) .^ 2 + exp(-4 * J ./ Ta));
// 磁気感受率
Xa = exp(2 * J ./ Ta) ./ Ta;
RXa = 1 ./ Xa;

// *** グラフのプロット ***
// エネルギー
subplot(2,2,1);
plot(T,E / N,'or');
plot(Ta, Ea, '--g');
xlabel("kT/J");
ylabel("E/NJ");
// 比熱
subplot(2,2,2);
plot(T,C,'or');
plot(Ta,Ca,'--g');
xlabel("kT/J");
ylabel("C/Nk");
// 磁化
subplot(2,2,3);
plot(T,M/N,'or');
plot(Ta,Ma/N,'--g');
xlabel("kT/J");
ylabel("M/N");
// 磁気感受率の逆数
subplot(2,2,4);
plot(T,RX,'or');
plot(Ta,RXa,'--g');
xlabel("kT/J");
ylabel("N/JX");


関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 確率論 乱数 イジング模型 モンテカルロ解析 強磁性 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCOPアンプPICCPA強磁性モンテカルロ解析常微分方程式トランジスタode状態密度インターフェースDOSPDS5022ecaljスイッチング回路定電流半導体シェルスクリプトレベルシフト乱数HP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ