Scilabでブラウン運動 その2

Scilabでブラウン運動 その1では二次元のランダムウォークの際に、斜めの方向にしか動けないようなモデル化を行っています。

002_20141109070543ce1.png

Fig.1: Scilabでブラウン運動 その1での二次元のシミュレーションの結果。各ステップにおいては、粒子は斜めの方向にしか移動できない。



二次元への拡張への別アプローチ


Scilabでブラウン運動 その1では、Scilabで楽しむ確率論(PDF)の対称ランダムウォークを三次元まで拡張しました。その際の方針は、Scilabで楽しむ確率論(PDF)で一次元から二次元に拡張した際のものを踏襲しました。

しかしながら一次元のランダムウォークを『単位時間(1ステップ)あたりに絶対値で1だけ移動するが、その方向はランダムである』と解釈するならば、二次元に拡張する際に別の考え方をしなければならなさそうです。

そこで今回はx軸からの角度θが一様分布に従った乱数で与えられるようにして、単位時間後に半径1の円周上のどこかに移動している場合のシミュレーションを行います。移動量はそれぞれ以下のように、極座標で計算することができます。

xi = r cosθ
yi = r sinθ

001_20141109095932f86.png
Fig.2: 二次元のランダムウォーク。任意の角度θへ移動できるようにしたバージョン。


Scilabスクリプトは以下のようになります。

clear;

// *** 計算の設定 ***
r = 1; // 1ステップの間に移動する距離
tnum = 10000; // 時間ステップ数
t = (0:1:tnum)'; // 時間のベクトル

// *** 位置の計算 ***
theta = 2 * %pi * rand(1,tnum);
xi = r .* cos(theta);
yi = r .* sin(theta);

S = [zeros(2,1), [cumsum(xi,'c'); cumsum(yi,'c')]];

// *** グラフのプロット ***
plot(S(1,:),S(2,:),'-b');
xlabel("x position");
ylabel("y position");


三次元への拡張


三次元への拡張も問題ないと思います。

xi = r sinθcosφ
yi = r sinθsinφ
zi = r cosφ

002_2014110909593264a.png
Fig.3: 三次元のランダムウォーク。三次元の極座標では角度θとφの二つのパラメータが必要。


Scilabスクリプトは以下のようになります。

clear;

// *** 計算の設定 ***
r = 1; // 1ステップの間に移動する距離
tnum = 10000; // 時間ステップ数
t = (0:1:tnum)'; // 時間のベクトル

// *** 位置の計算 ***
theta = 2 * %pi * rand(1,tnum);
phi = 2 * %pi * rand(1,tnum);
xi = r .* sin(theta) .* cos(phi);
yi = r .* sin(theta) .* sin(phi);
zi = r .* cos(phi);

S = [zeros(3,1), [cumsum(xi,'c'); cumsum(yi,'c'); cumsum(zi,'c')]];

// *** グラフのプロット ***
param3d(S(1,:),S(2,:),S(3,:));
xlabel("x position");
ylabel("y position");
zlabel("z position");


ランダウの計算物理学による分類


ランダウの計算物理学 基礎編には以下のようにあります。

ランダムステップをどのように発生させるかで,異なる結果に至ることもありうる.以下に, 2次元のランダムウォークを発生するためのいくつかの方法をあげた.

  1. 方位角θを[0,2π]の間の乱数として選ぶ.次にΔx=cosθおよびΔy=sinθとする.(こうすると,一様な乱数を三角関数で写像することになり,当然のことだが水平・垂直の格子点上をランダムウォークするのとは異なる振る舞いとなる.)
  2. Δxを[-√2,√2]の範囲の乱数として選ぶ.これと独立にΔyも[-√2,√2]の範囲の乱数として選ぶ.こうすれば,xとyそれぞれの方向について,正負のステップが同じ確率で発生することになる.
  3. Δxを[-1,1]の範囲の乱数として選ぶ.次にΔy=±√(1-Δx2)とする.(符号もランダムに与える.)
  4. ステップの方向として(北, 東, 南, 西)をランダムに選択する(こうすると三角関数が不要になる).4つの方位から一つを選ぶのは[1,4]の整数を選択するのと等価であることに注意せよ.
  5. ステップの方向として(北, 北東, 東, 南東, 南, 南西, 西, 北東)をランダムに選択する(こうすると三角関数が不要になる).8つの方位から一つを選ぶのは[1,8]の整数を選択するのと等価であることに注意せよ.

今回の例は1.の方法を採用したものです。
そして、Scilabでブラウン運動 その1の方法は4.の方法と同じです。(移動する距離は二次元では√2となっていますが。)

関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器





フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 乱数 モンテカルロ解析 確率論 ランダムウォーク ブラウン運動 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性OPアンプPICCPAecaljモンテカルロ解析常微分方程式odeトランジスタ状態密度DOSインターフェース定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフト分散関係HP6632AI2C可変抵抗トランジスタ技術ブレッドボード温度解析R6452A反強磁性確率論バンドギャップセミナー数値積分熱設計非線形方程式ソルババンド構造絶縁偏微分方程式ISO-I2CLM358マフィンティン半径フォトカプラシュミットトリガカオスLED三端子レギュレータGW近似A/Dコンバータ発振回路PC817C直流動作点解析USBTL431数値微分アナログスイッチカレントミラー74HC4053サーボ量子力学単振り子チョッパアンプ補間2ちゃんねる開発環境bzqltyFFT電子負荷LDAイジング模型BSch基本並進ベクトルブラべ格子パラメトリック解析標準ロジックアセンブラ繰り返し六方最密充填構造SMPコバルトewidthFET仮想結晶近似QSGW不規則合金VCAMaximaGGA熱伝導cygwinスレーターポーリング曲線キュリー温度スイッチト・キャパシタ失敗談ランダムウォークgfortran抵抗相対論位相図スピン軌道相互作用VESTA状態方程式TLP621ラプラス方程式TLP552条件分岐NE555LM555TLP521マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測QNAPUPSWriter509ダイヤモンドデータロガー格子比熱熱力学起電力awkブラウン運動スーパーセルUbuntu差し込みグラフ第一原理計算フェルミ面fsolveCIFxcrysden最大値最小値ubuntu最適化平均場近似OpenMP井戸型ポテンシャル固有値問題シュレディンガー方程式TeX2SC1815結晶磁気異方性OPA2277フラクタルFSM固定スピンモーメントc/a非線型方程式ソルバgnuplot全エネルギーfcc初期値マンデルブロ集合縮退正規分布interp1ウィグナーザイツ胞L10構造multiplotフィルタ面心立方構造PGAハーフメタル二相共存ZnOウルツ鉱構造BaOSIC重積分磁気モーメント電荷密度化学反応クーロン散乱岩塩構造CapSenseノコギリ波デバイ模型キーボード半金属フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt合金Realforce軸ラベルグラフの分割凡例線種シンボルMAS830LCK1026LMC662PIC16F785トランス関数フィッティングトラックボールPC等価回路モデルヒストグラムパラメータ・モデル不規則局所モーメント最小二乗法TS-112TS-110直流解析ExcelGimp円周率片対数グラフ両対数グラフspecx.f疎行列三次元ifort文字列不純物問題P-10等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン入出力境界条件陰解法AACircuit熱拡散方程式HiLAPWMBEEAGLE連立一次方程式ナイキスト線図負帰還安定性Crank-Nicolson法日本語

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ