スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。


AkaiKKRでLi-ion電池の充放電

AkaiKKRでリチウムイオン電池の起電力ではAkaiKKR(machikaneyama)を用いてリチウムイオン二次電池の満充電状態から完全放電状態までの間の平均起電力を計算しました。今回は、リチウムを段階的に放出させ、充放電の途中の起電力を計算しました。

前回同様、定量的にはどの程度信用してよいのかは分かりませんが、正電極材料にLiCoO2やLiNiO2を使うよりもLiCo1/3Ni1/3Mn1/3O2を使うほうが起電力の低下が起こりにくいという予想が得られました。


充電/放電の途中


AkaiKKRでリチウムイオン電池の起電力ではAkaiKKR(machikaneyama)を用いてリチウムイオン二次電池の起電力が、正電極材料によってどのように変化するかを計算しました。

その際、前回のエントリでは以下の化学反応を考え、満充電状態と完全放電状態の間のエネルギー差から起電力を計算しました。

LiCoO2 ⇔ CoO2 + Li + e-

しかしながら、このときの起電力は(おそらく)満充電状態から完全放電状態までの起電力の平均値だろうと考えられます。しかしながら、通常の電池では、放電をするにつれて起電力が下がっていきます。
より具体的に言うならば、例えば以下の二つの状況下では、求められる起電力が異なるはずであると言うことです。

LiCoO2 ⇔ Li0.9CoO2 + 0.1Li + 0.1e-

Li0.9CoO2 ⇔ Li0.8CoO2 + 0.1Li + 0.1e-

そんなわけで、前回のエントリと同様にして、充放電の途中の起電力を計算します。

入力ファイル


リチウムの濃度を変化させながら全エネルギーを変化させるために、シェルスクリプトと入力ファイルのテンプレートを作成しました。

#!/bin/csh -f

set XI_LIST=( 100 90 80 70 60 50 40 30 20 10 0 )

foreach XILI ( ${XI_LIST} )
set XIVC=`echo 100 - ${XILI} | bc`
echo " XI= "${XILI}
sed 's/'XIVC'/'${XIVC}'/g' in/LixCoO2.in0 | sed 's/'XILI'/'${XILI}'/g' > in/Li${XILI}CoO2.in
specx < in/Li${XILI}CoO2.in > out/Li${XILI}CoO2.out
cp data/LixCoO2 data/Li${XILI}CoO2
tail -n 1 data/LixCoO2.info
end


c----------------------LiCoO2--------------------------------
go data/LixCoO2
c------------------------------------------------------------
c brvtyp a c/a b/a alpha beta gamma
rhb 9.373 , , , 32.97 , , ,
c------------------------------------------------------------
c edelt ewidth reltyp sdftyp magtyp record
0.001 1.7 sra mjwasa mag 2nd
c------------------------------------------------------------
c outtyp bzqlty maxitr pmix
update 4 200 0.02
c------------------------------------------------------------
c ntyp
3
c------------------------------------------------------------
c type ncmp rmt field mxl anclr conc
LiVc 2 1 0.000 2
3 XILI
0 XIVC
Co 1 1 0.000 2
27 100
O 1 1 0.000 2
8 100
c------------------------------------------------------------
c natm
4
c------------------------------------------------------------
c atmicx atmtyp
0 , 0 , 0 , Co
0.5a , 0.5b , 0.5c , LiVc
0.26a , 0.26b , 0.26c , O
0.74a , 0.74b , 0.74c , O
c------------------------------------------------------------


計算結果


結果はFig.1の様になりました。

battery.png

Fig.1: AkaiKKRによるリチウムイオン電池の充放電特性


この計算結果がどの程度定量的に信用できるのかは、正直なところ私には良くわかりませんが、もし仮に今回の計算結果が正しいとしたらどの様な意味を持つのかについて考えて見ます。

まず、放出されるリチウムの量が移動する電子の量と1対1対応しているので、グラフの横軸のリチウム濃度と言うのは、定電流充電/放電した際の時間経過と考えることが出来ます。前回のエントリで書いたとおり、この場合の起電力の実体は全エネルギーの差でしかないので電圧が高いほど多くの電力が供給できることを意味しています。

この図からは、遷移金属にコバルトやニッケル単体を用いた場合よりも、コバルトニッケルマンガンを1/3ずつ入れたときの方が放電時の起電力の低下が少ないことが読み取れます。
電池の特性としては、容量が大きいだけでなく、消耗しても電圧が下がらないほうがありがたいので、コバルトの一部を置換することによって放電特性が良くなることを示しています。

というようなことを書いた後に


今回のエントリは、ふとした思い付きで計算してみたわけなのですが、どうやらリチウムイオン電池の起電力の第一原理計算は、本当に第一線の問題であるようです。

AkaiKKR掲示板ではWhy electrons are in vacancy? (in Japanese)にて議論されています。また中山 将伸さんのウエブページにはリチウムイオン電池(基礎編・電池材料学)第一原理計算(解析編)といった記事が公開されています。

エントリを書き終わってから、上記のようなページに気が付いたので、このエントリの公開をやめるか(あるいはちゃんと計算しなおすか)とも考えましたが、あまり労力をかける気も起きなかったので、そのまま公開することにしました。
そんなわけで(変な言い回しですが)ちゃんとした研究のためにこのページに来てくださった方は、このエントリが極めてテキトーに作られていることにご注意ください。

関連エントリ




参考URL




付録


このエントリで使用したAkaiKKRの入力ファイルのテンプレートとシェルスクリプトを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器



フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama KKR CPA シェルスクリプト 起電力 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式トランジスタodeDOSインターフェースPDS5022定電流スイッチング回路分散関係半導体シェルスクリプトレベルシフト乱数HP6632A可変抵抗トランジスタ技術R6452AI2C温度解析ブレッドボードバンドギャップ確率論反強磁性セミナーバンド構造数値積分偏微分方程式非線形方程式ソルバ熱設計絶縁三端子レギュレータISO-I2CA/DコンバータシュミットトリガフォトカプラカオスPWscfGW近似LM358LEDマフィンティン半径発振回路USB数値微分TL431PC817Cサーボアナログスイッチ直流動作点解析補間カレントミラー74HC4053bzqltyチョッパアンプFFT2ちゃんねる開発環境量子力学単振り子電子負荷VESTAQuantumESPRESSO標準ロジックパラメトリック解析ブラべ格子イジング模型アセンブラLDA基本並進ベクトルBSchSMPTLP621失敗談六方最密充填構造コバルト位相図QSGWGGAスイッチト・キャパシタewidth状態方程式VCAキュリー温度繰り返し最適化仮想結晶近似不規則合金熱伝導gfortran相対論抵抗FETMaximaQuantum_ESPRESSOcygwinランダムウォークラプラス方程式スピン軌道相互作用スレーターポーリング曲線マントルシュレディンガー方程式ZnO自動計測QNAP固有値問題ダイヤモンドデータロガー井戸型ポテンシャルTLP552CIFxcrysdenゼーベック係数熱力学条件分岐MCU最小値UPS格子比熱最大値ガイガー管平均場近似過渡解析Writer509スーパーセルFXA-7020ZR差し込みグラフ第一原理計算テスタ起電力OpenMP三角波ubuntuLM555NE555ブラウン運動詰め回路ハーフメタルawkfsolveUbuntuフェルミ面TLP521トランスMAS830LPGACK1026OPA2277フィルタトレーナーバトルEAGLEノコギリ波負帰還安定性ナイキスト線図MBEP-10LMC6622SC1815CapSenseAACircuitPIC16F785入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式ヒストグラム確率論初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分SIC不純物問題擬ポテンシャル状態図cif2cellPWgui二相共存ウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造マテリアルデザインspecx.fフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列ポケモンGO熱拡散方程式HiLAPW両対数グラフ片対数グラフ陰解法Crank-Nicolson法ifort境界条件連立一次方程式グラフの分割軸ラベルヒストグラム不規則局所モーメントスーパーリーグ円周率Gimp凡例線種シンボルトラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。