AkaiKKRでFeCrの磁気モーメント

AkaiKKRでFeCoの磁気モーメントと格子定数に引き続きAkaiKKR(Machikaneyama)を用いてスレーターポーリング曲線に乗る強磁性遷移金属合金のひとつである不規則FeCr系合金の磁気モーメントを計算しました。

FeCr.gif

Fig.1: bcc-FexCr100-x合金の状態密度のクロム濃度依存性。アニメーションは純鉄から順に10%刻みで純クロムまで。


得られた磁気モーメントは、スレーターポーリング曲線が示すとおり、平均価電子数に対して直線的に変化しました。この結果は、リジッドバンドモデルを用いて理解することが出来ます。ただし、コヒーレントポテンシャル近似を用いて得られた状態密度曲線は、不規則性の効果により、かなり鋭さを減じています。


スレーターポーリング曲線


AkaiKKRでFeCoの磁気モーメントと格子定数ではAkaiKKR(Machikaneyama)を用いてスレーターポーリング(Slater-Pauling)曲線の頂点に位置するFeCo系合金の計算を行いました。
今回は、スレーターポーリング曲線の左端で強磁性が消失する部分に相当するFeCr合金の磁気モーメントを計算します。

以下に示すのは、磁石・磁気の用語辞典にて紹介されているスレーターポーリング曲線です。

001_20140604225835b78.jpg

Fig.2: スレーターポーリング(Slater-Pauling)曲線


計算手法


AkaiKKRでFeCoの磁気モーメントと格子定数と同様に格子定数と化学組成を変化させ、それぞれの化学組成に対してMurnaghanの状態方程式をフィッティングし、平衡格子定数を求めた後、スプライン補間から平衡格子定数のときの磁気モーメントを求めました。

結晶構造は全て体心立方構造(bcc)とし、格子定数の範囲は a = 5.23 bohr から a = 5.35 bohr まで 0.01 bohr 刻みとしました。以下は、FeCr系入力ファイルの一例です。

 go    data/fecr_5.29
bcc 5.29 , , , , , ,
0.001 1.2 sra mjw mag 2nd
update 16 200 0.02
1
FeCr 2 0 0 2 26 30
24 70
1
0.00000 0.00000 0.00000 FeCr


結果と議論


得られた磁気モーメントは、スレーターポーリング曲線を再現し、純Crで強磁性が消失しました。

001_20140605072505cfc.png

Fig.3: 磁気モーメントの鉄濃度依存性


次に状態密度を見てみます。
まずはコヒーレントポテンシャル近似(CPA)が必要ない端成分である純鉄と純クロムの状態密度を以下に示します。

Fe100Cr0.png
Fig.4: 純鉄の状態密度

Fe0Cr100.png
Fig.5: 純クロムの状態密度


クロムは非磁性なので、多数スピンバンドと少数スピンバンドの状態密度が同じ形状をしています。
しかしながら、各スピンバンドごとの状態密度曲線の形状は、鉄とクロムで互いによく似ています。このことからリジッドバンドモデルが成り立つのではないかと言う予測が立ちます。

リジッドバンド的な考え方では、FeCr系の磁気モーメントの変化は、鉄から価電子数を減らしていったとき、多数スピンバンドの状態密度がフェルミ準位に対して、相対的に高エネルギー側へシフトし、少数スピンバンドではほとんど変わらないと解釈されます。

このことに関して、コヒーレントポテンシャル近似による合金化の効果も含めて状態密度を順に示します。

Fe100Cr0.png
Fig.6: Fe100Cr0の状態密度

Fe90Cr10.png
Fig.7: Fe90Cr10の状態密度

Fe80Cr20.png
Fig.8: Fe80Cr20の状態密度

Fe70Cr30.png
Fig.9: Fe70Cr30の状態密度

Fe60Cr40.png
Fig.10: Fe60Cr40の状態密度

Fe50Cr50.png
Fig.11: Fe50Cr50の状態密度

Fe40Cr60.png
Fig.12: Fe40Cr60の状態密度

Fe30Cr70.png
Fig.13: Fe30Cr70の状態密度

Fe20Cr80.png
Fig.14: Fe20Cr80の状態密度

Fe10Cr90.png
Fig.15: Fe10Cr90の状態密度

Fe0Cr100.png
Fig.16: Fe0Cr100の状態密度


CPA計算の結果から、多数スピンバンドの状態密度は、不規則性の効果によって形状の鋭さがかなり失われています。これに対して、少数スピンバンドはあまり変化しているように見えません。
FeCr系の状態密度は常に多数スピンバンドのフェルミ準位がdバンドの中にあり、強磁性となるときは弱い強磁性です。

関連エントリ




参考URL




参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama KKR CPA 強磁性 Scilab スレーターポーリング曲線 DOS 状態密度 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ