Scilabで一次元のラプラス方程式 その3

Scilabで一次元のラプラス方程式 その1その2では一次元のラプラス方程式を 0 ≦ x ≦ 1 の範囲で以下の様なディリクレの境界条件で解きました。

一次元ラプラス方程式:
\frac{\partial^2 u}{\partial x^2} = 0

ディリクレ境界条件:
u = 1 (x = 0)
u = 0 (x = 1)

今回は、同様の方程式を x = 0 に関して以下の様なノイマンの境界条件で解きました。

ノイマン境界条件:
∂u/∂x = -1 (x = 0)


ラプラス方程式と境界条件


Scilabで一次元のラプラス方程式 その1その2では一次元のラプラス方程式をScilabを用いて数値的に解きました。

\frac{\partial^2 u}{\partial x^2} = 0

偏微分方程式を解くためには、この式のほかに幾つかの境界条件が必要です。
偏微分方程式の数値解法入門によると偏微分方程式の境界条件に関して以下の様に書かれています。

境界上においてuの値(関数値)が指定されている境界条件を第1種の境界条件あるいディリクレ(Dirichlet)の境界条件という.
一方,境界上でその境界の外向き法線方向nの微分係数∂u/∂nが指定されている場合がある.これを第2種の境界条件あるいはノイマン(Neumann)の境界条件という.

Scilabで一次元のラプラス方程式 その1その2、及びScilabで熱拡散方程式 その1その2その3は全てディリクレの境界条件でした。そこで今回は、一次元のラプラス方程式を境界の片側をノイマンの境界条件で、反対側をディリクレの境界条件として数値的に解くことにします。

連立方程式の立て方はScilabで一次元のラプラス方程式 その1の流儀で行きます。

問題設定


解くべき方程式は、一次元のラプラス方程式です。

\frac{\partial^2 u}{\partial x^2} = 0

ただし 0 ≦ x ≦ 1
境界条件は

x = 0 にて
\frac{\partial u}{\partial x} = -1

x = 1 にて
u = 0

とします。


001_20140220011035c9c.png
Fig.1: 計算の設定(と計算結果)


まず前回までと同様にディリクレ境界条件と偏微分方程式から以下の連立方程式が立ちます。

u1 - 2u2 + u3 = 0
u2 - 2u3 + u4 = 0
u3 - 2u4 + u5 = 0
u5 = 0

当然ながらこれだけでは変数の数に対して方程式の数が足りないので、ノイマンの境界条件についても考えます。1階の偏微分をを前進差分近似で表すと以下の様になります。

\frac{\partial u}{\partial x} = \frac{u_{i+1} - u_{i}}{\Delta x}

より良い精度で計算をするためには(-Δx,u0)の点も用意して中心差分近似を使うべきなのでしょうが、今回は前進差分近似で済ませることにします。

これがx = 0 で ∂u/∂x = -1 なので

\frac{u_2 - u_1}{\Delta x} = -1

したがって

u1 - u2 = Δx

結局、連立方程式は以下の様になります。

u1 - u2 = Δx
u1 - 2u2 + u3 = 0
u2 - 2u3 + u4 = 0
u3 - 2u4 + u5 = 0
u5 = 0

これをScilabで連立一次方程式の方法で解くプログラムがLaplace1d3_sce.txtです。

clear;

// xの刻み幅
dx = 1 / 4;
// グラフ用のx座標
x = [0:dx:1];

// *** 連立方程式の定義 ***
A = [1 -1 0 0 0;
1 -2 1 0 0;
0 1 -2 1 0;
0 0 1 -2 1;
0 0 0 0 1];
b = [dx;
0;
0;
0;
0];

// *** ラプラス方程式の解 ***
u = A \ b;

// *** グラフのプロット ***
// グラフのプロット
plot(x,u,'-ob');
// グラフの装飾
xlabel("x");
ylabel("u");
zoom_rect([0,0,1.2,1.2]);


境界条件の意味


ラプラス方程式は、熱拡散方程式や波動方程式の時間微分の項をゼロと置いたものでした。従って一次元のラプラス方程式自体の物理的なイメージは、例えば、充分に長い時間を置いた針金の中の温度分布などとして理解できます。

Scilabで熱拡散方程式 その1その2その3で分かるとおり、ディリクレの境界条件は、境界での温度を指定することに対応します。
一方で、ノイマンの境界条件は、境界での温度勾配を指定することに対応します。熱伝導に対するフーリエの法則は以下の様に表すことができます。

q = k \frac{\partial T}{\partial x}

(q: 熱フラックス, k: 熱伝導度, T: 温度, x: 位置)

フーリエの法則の式から明らかなように、境界での温度勾配を指定するということは、境界での熱流量を指定することと同じです。特に ∂T/∂x = 0 の場合は、熱流量がゼロということなので、境界が断熱的であることを意味しています。

関連エントリ




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 偏微分方程式 ラプラス方程式 境界条件 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性OPアンプPICCPA常微分方程式モンテカルロ解析ecaljodeトランジスタ状態密度インターフェースDOS定電流スイッチング回路PDS5022半導体シェルスクリプトレベルシフト乱数HP6632AR6452AI2C可変抵抗分散関係トランジスタ技術ブレッドボード温度解析反強磁性確率論バンドギャップセミナー数値積分熱設計非線形方程式ソルババンド構造絶縁偏微分方程式ISO-I2CLM358フォトカプラ三端子レギュレータカオスLEDシュミットトリガGW近似A/Dコンバータ発振回路PC817C直流動作点解析USBマフィンティン半径数値微分アナログスイッチTL43174HC4053カレントミラーサーボ量子力学単振り子チョッパアンプ補間2ちゃんねる開発環境bzqltyFFT電子負荷LDAイジング模型BSch基本並進ベクトルブラべ格子パラメトリック解析標準ロジックアセンブラ繰り返し六方最密充填構造SMPコバルトewidthFET仮想結晶近似QSGW不規則合金VCAMaximaGGA熱伝導cygwinスレーターポーリング曲線キュリー温度スイッチト・キャパシタ失敗談ランダムウォークgfortran抵抗相対論位相図スピン軌道相互作用VESTA状態方程式TLP621ラプラス方程式TLP552条件分岐NE555LM555TLP521マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測QNAPUPSWriter509ダイヤモンドデータロガー格子比熱熱力学awkブラウン運動起電力スーパーセル差し込みグラフ第一原理計算フェルミ面fsolve最大値xcrysden最小値最適化ubuntu平均場近似OpenMP井戸型ポテンシャルシュレディンガー方程式固有値問題2SC1815結晶磁気異方性OPA2277非線型方程式ソルバTeXgnuplot固定スピンモーメントFSMPGAc/a全エネルギーfccフラクタルマンデルブロ集合正規分布縮退初期値interp1multiplotフィルタ面心立方構造ウィグナーザイツ胞L10構造半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度化学反応CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタルキーボードフォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt合金等高線線種凡例シンボルトラックボールPC軸ラベルグラフの分割トランス文字列CK1026MAS830L直流解析Excel不規則局所モーメントパラメータ・モデル入出力日本語最小二乗法等価回路モデルヒストグラムGimp円周率TS-110TS-112PIC16F785LMC662三次元specx.fifortUbuntu疎行列不純物問題Realforceジバニャン方程式ヒストグラム確率論マテリアルデザインP-10境界条件連立一次方程式熱拡散方程式AACircuitHiLAPW両対数グラフ片対数グラフ陰解法MBEナイキスト線図負帰還安定性Crank-Nicolson法EAGLE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ