Scilabで一次元のラプラス方程式 その3

Scilabで一次元のラプラス方程式 その1その2では一次元のラプラス方程式を 0 ≦ x ≦ 1 の範囲で以下の様なディリクレの境界条件で解きました。

一次元ラプラス方程式:
\frac{\partial^2 u}{\partial x^2} = 0

ディリクレ境界条件:
u = 1 (x = 0)
u = 0 (x = 1)

今回は、同様の方程式を x = 0 に関して以下の様なノイマンの境界条件で解きました。

ノイマン境界条件:
∂u/∂x = -1 (x = 0)


ラプラス方程式と境界条件


Scilabで一次元のラプラス方程式 その1その2では一次元のラプラス方程式をScilabを用いて数値的に解きました。

\frac{\partial^2 u}{\partial x^2} = 0

偏微分方程式を解くためには、この式のほかに幾つかの境界条件が必要です。
偏微分方程式の数値解法入門によると偏微分方程式の境界条件に関して以下の様に書かれています。

境界上においてuの値(関数値)が指定されている境界条件を第1種の境界条件あるいディリクレ(Dirichlet)の境界条件という.
一方,境界上でその境界の外向き法線方向nの微分係数∂u/∂nが指定されている場合がある.これを第2種の境界条件あるいはノイマン(Neumann)の境界条件という.

Scilabで一次元のラプラス方程式 その1その2、及びScilabで熱拡散方程式 その1その2その3は全てディリクレの境界条件でした。そこで今回は、一次元のラプラス方程式を境界の片側をノイマンの境界条件で、反対側をディリクレの境界条件として数値的に解くことにします。

連立方程式の立て方はScilabで一次元のラプラス方程式 その1の流儀で行きます。

問題設定


解くべき方程式は、一次元のラプラス方程式です。

\frac{\partial^2 u}{\partial x^2} = 0

ただし 0 ≦ x ≦ 1
境界条件は

x = 0 にて
\frac{\partial u}{\partial x} = -1

x = 1 にて
u = 0

とします。


001_20140220011035c9c.png
Fig.1: 計算の設定(と計算結果)


まず前回までと同様にディリクレ境界条件と偏微分方程式から以下の連立方程式が立ちます。

u1 - 2u2 + u3 = 0
u2 - 2u3 + u4 = 0
u3 - 2u4 + u5 = 0
u5 = 0

当然ながらこれだけでは変数の数に対して方程式の数が足りないので、ノイマンの境界条件についても考えます。1階の偏微分をを前進差分近似で表すと以下の様になります。

\frac{\partial u}{\partial x} = \frac{u_{i+1} - u_{i}}{\Delta x}

より良い精度で計算をするためには(-Δx,u0)の点も用意して中心差分近似を使うべきなのでしょうが、今回は前進差分近似で済ませることにします。

これがx = 0 で ∂u/∂x = -1 なので

\frac{u_2 - u_1}{\Delta x} = -1

したがって

u1 - u2 = Δx

結局、連立方程式は以下の様になります。

u1 - u2 = Δx
u1 - 2u2 + u3 = 0
u2 - 2u3 + u4 = 0
u3 - 2u4 + u5 = 0
u5 = 0

これをScilabで連立一次方程式の方法で解くプログラムがLaplace1d3_sce.txtです。

clear;

// xの刻み幅
dx = 1 / 4;
// グラフ用のx座標
x = [0:dx:1];

// *** 連立方程式の定義 ***
A = [1 -1 0 0 0;
1 -2 1 0 0;
0 1 -2 1 0;
0 0 1 -2 1;
0 0 0 0 1];
b = [dx;
0;
0;
0;
0];

// *** ラプラス方程式の解 ***
u = A \ b;

// *** グラフのプロット ***
// グラフのプロット
plot(x,u,'-ob');
// グラフの装飾
xlabel("x");
ylabel("u");
zoom_rect([0,0,1.2,1.2]);


境界条件の意味


ラプラス方程式は、熱拡散方程式や波動方程式の時間微分の項をゼロと置いたものでした。従って一次元のラプラス方程式自体の物理的なイメージは、例えば、充分に長い時間を置いた針金の中の温度分布などとして理解できます。

Scilabで熱拡散方程式 その1その2その3で分かるとおり、ディリクレの境界条件は、境界での温度を指定することに対応します。
一方で、ノイマンの境界条件は、境界での温度勾配を指定することに対応します。熱伝導に対するフーリエの法則は以下の様に表すことができます。

q = k \frac{\partial T}{\partial x}

(q: 熱フラックス, k: 熱伝導度, T: 温度, x: 位置)

フーリエの法則の式から明らかなように、境界での温度勾配を指定するということは、境界での熱流量を指定することと同じです。特に ∂T/∂x = 0 の場合は、熱流量がゼロということなので、境界が断熱的であることを意味しています。

関連エントリ




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 偏微分方程式 ラプラス方程式 境界条件 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCCPAOPアンプPIC強磁性モンテカルロ解析常微分方程式トランジスタodeインターフェース状態密度DOSecalj定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフトHP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ