Scilabで一次元のラプラス方程式 その1

Scilabで熱拡散方程式 その1その2その3では一次元の熱拡散方程式をScilabで数値的に解きました。今回はこれらプログラムをよりよく理解するために、より簡単な一次元のラプラス方程式を解いてみます。

\frac{\partial^2 u}{\partial x^2} = 0

実を言うと一次元のラプラス方程式は、Scilabで連立一次方程式で計算した連立一次方程式になってしまうので簡単に計算することが出来ます。


ラプラス方程式


ラプラス方程式は、熱拡散方程式や波動方程式に対して、時間の偏微分の項をゼロとしたものです。

2u=0

一次元の場合は

\frac{\partial^2 u}{\partial x^2} = 0

です。

時間による偏微分がゼロということなので、この式は定常状態の物理現象を表しています。

ラプラス方程式の解法


一次元のラプラス方程式を、0 ≦ x ≦ 1 の範囲で、下記の境界条件で解くことを考えます。

u = 1 (x = 0)
u = 0 (x = 1)

この解は、数値計算をするまでもなく直感的に (x,u)=(0,1) と (1,0) を通る直線となることが想像できます。

つまり

u = 1 - x

です。

このことを実際に差分化を行った数値計算から確認します。
簡単のため、空間の分割数は極端に少なくすることにします。(Fig.1)


001_201402170611560b6.png
Fig.1: ラプラス方程式の差分化


2u/∂x2 を差分化すると

\frac{\partial^2 u}{\partial x^2} = \frac{1}{(\Delta x)^2} (u_{i+1} - 2u_{i} + u_{i-1})

ラプラス方程式は ∂2u/∂x2 = 0 なので差分化したラプラス方程式は

ui+1 - 2ui + ui+1 = 0

となります。(参考:偏微分方程式の数値解法入門)

先ほどの境界条件とあわせると

u1 = 1
u1 - 2u2 + u3 = 0
u2 - 2u3 + u4 = 0
u4 = 0

となり、これは実のところScilabで連立一次方程式で解いた連立一次方程式以外の何物でもありません。

よって行列Aとベクトルu, bを以下の様におくと

A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix}

\mathbf{u} = \left(   \begin{array}{c}     u_1 \\     u_2 \\     u_3 \\     u_4   \end{array} \right)

\mathbf{b} = \left(   \begin{array}{c}     1 \\     0 \\    0 \\     0   \end{array} \right)

連立方程式は、以下の様に行列の式で表現することが出来ます。

Au=b

Scilabで連立一次方程式と同様に計算すればラプラス方程式が解けたことになります。

clear;

// *** 連立方程式の定義 ***
A = [1 0 0 0;
1 -2 1 0;
0 1 -2 1;
0 0 0 1];
b = [1;
0;
0;
0];

// *** ラプラス方程式の解 ***
u = A \ b;

// *** グラフのプロット ***
// グラフ用のx座標
x = linspace(0,1,4);
// グラフのプロット
plot(x,u,'-ob');
// グラフの装飾
xlabel("x");
ylabel("u");
zoom_rect([0,0,1.2,1.2]);


関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 偏微分方程式 ラプラス方程式 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCOPアンプPICCPA強磁性モンテカルロ解析常微分方程式トランジスタode状態密度インターフェースDOSPDS5022ecaljスイッチング回路定電流半導体シェルスクリプトレベルシフト乱数HP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ