Scilabでデータの補間

Scilabで数値積分:地球深部の密度と圧力では表として与えられているデータの数値積分を行いました。今回は表として与えられているデータの、データとデータの間の値を推定する、データの補間(内挿)の方法について書きます。

001_201311132310181fb.png

Fig.1: PREMの表に載っている地球の外核の密度(青丸)とその補間値(赤線)



Fig.1は、地球の半径1221.5kmから3480kmに位置する「外核」の密度です。
青の丸で示してあるのが、地震波観測から得られた一次元地球内部モデルPREM (Dziewonski and Anderson, 1981)です。PREMの表には半径200kmおきに密度などのデータが記載されています。しかしながら、例えば半径2500kmでの密度の値が知りたいとしても値が書いてありません。
こういうときには、どうすればよいでしょうか?いまの例だと、例えば、2400kmでの値と2600kmでの値が載っているので、平均を取るということも出来ます。

このように2点の間の点の値を2点間を結ぶ直線上の値として計算する方法を線形補間といいます。Scilabで数値積分:地球深部の密度と圧力で積分を計算するときに行ったのも実を言うとこれでした。

赤の実線でプロットされているのがPREMのデータからスプライン曲線で補間(内挿)をおこなったものです。
補間にはinterp1を利用しました。

[yp]=interp1(x, y, xp [, method,[extrapolation]])


x,yが保管される元となるデータでxpが補間したい値です。
xpは単一の数値でも、ベクトルでも大丈夫です。今回の例の様にxpにベクトルを入力するとypもベクトルで返ってきます。
今回の例ではスプライン補間をするため、methodの部分には'spline'を指定します。

補間の種類


Scilabの補間の方法には'spline','linear','nearest'の3種類が指定できます。
これらの違いを示すために3種類のプロットを行ったのがFig.2です。

002_20131113231018937.png

Fig.2: 3種類の補間の違い。スプライン補間(赤)、線形補間(青)、最近接データのプロット(緑)


赤のスプライン補間と青の線形補間はほとんど同じ値を示していますが、よく見るとスプライン補間の曲線のほうが上にt凸な形をしています。

少ないデータ点からグラフを滑らかに書くのには便利ですが、補間曲線の種類によって値が変わってしまうので値自体に過信は禁物です。

clear;
format('e',12);

// *** PREMのテーブルを読み出し ***
X = fscanfMat('PREM.txt');
Radius = 1E3 * X(:,1); // 半径 (m)
Vp = X(:,2); // P波速度 (m/s)
Vs = X(:,3); // S波速度 (m/s)
RHO = 1E3 * X(:,4); // 密度 (g/m^3)
Ks = 1E12 * X(:,5); // 断熱体積弾性率(Pa)
Mu = 1E12 * X(:,6); // 剛性率(Pa)
Nu = 1E12 * X(:,7); //
Pressure = 1E12 * X(:,8); // 圧力(Pa)
Gravity = X(:,9); // 重力加速度 (m/s^2)

// 半径と密度の外核の部分だけ取り出し
OCR = Radius(9:21); // 外核の半径 Outer Core Radius
OCD = RHO(9:21); // 外核の密度 Outer Core Density

// *** 内挿 ***
OCRp = linspace(OCR(1),OCR($));
OCDp = interp1(OCR,OCD,OCRp,'spline');

// *** プロット ***
// 外核全領域のプロット
scf(0);
plot(1E-3 * OCRp, 1E-3 * OCDp,'-r');
plot(1E-3 * Radius(9:21),1E-3 * RHO(9:21),'ob');
ylabel("Density (kg/s^3)");
xlabel("Radius (km)");

// 2300-2700kmの領域のプロット
scf(1);
//xsetech([0,0,0.95,0.95]);
// スプライン曲線による補間
plot(1E-3 * OCRp, 1E-3 * interp1(OCR,OCD,OCRp,'spline'),'-r');
// 線形補間
plot(1E-3 * OCRp, 1E-3 * interp1(OCR,OCD,OCRp,'linear'),'--b');
// 最近接データの値による補間
plot(1E-3 * OCRp, 1E-3 * interp1(OCR,OCD,OCRp,'nearest'),'-.g');
plot(1E-3 * Radius(9:21),1E-3 * RHO(9:21),'ob');
zoom_rect([2300,11050,2700,11350]);
legend(['spline','linear','nearest']);
ylabel("Density (kg/s^3)");
xlabel("Radius (km)");


関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 補間 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPA強磁性PICモンテカルロ解析常微分方程式odeトランジスタecalj状態密度DOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析分散関係I2Cトランジスタ技術R6452A可変抵抗ブレッドボードセミナーバンドギャップ数値積分確率論反強磁性偏微分方程式バンド構造絶縁熱設計非線形方程式ソルバフォトカプラシュミットトリガLEDLM358カオスISO-I2C三端子レギュレータGW近似A/Dコンバータカレントミラーアナログスイッチ数値微分マフィンティン半径TL431発振回路サーボPC817CUSB直流動作点解析74HC4053補間FFTBSch開発環境パラメトリック解析2ちゃんねるチョッパアンプ量子力学bzqlty電子負荷イジング模型LDA標準ロジックアセンブラ基本並進ベクトルブラべ格子単振り子熱伝導位相図TLP621キュリー温度繰り返し状態方程式MaximaVESTAスイッチト・キャパシタ相対論FETランダムウォークスピン軌道相互作用SMP六方最密充填構造抵抗不規則合金ewidthスレーターポーリング曲線GGAラプラス方程式cygwingfortranQSGW失敗談コバルト条件分岐TLP521テスタLM555Writer509TLP552格子比熱マントルデータロガー自動計測詰め回路ガイガー管ダイヤモンドQNAPMCUFXA-7020ZR過渡解析三角波UPSNE555固有値問題熱力学ブラウン運動フェルミ面awk起電力第一原理計算OpenMPfsolveubuntu最大値xcrysden最小値最適化仮想結晶近似VCA差し込みグラフスーパーセル井戸型ポテンシャル平均場近似シュレディンガー方程式FSMフラクタルOPA2277固定スピンモーメント2SC1815全エネルギー合金multiplotgnuplotc/aTeX結晶磁気異方性interp1ウィグナーザイツ胞初期値マンデルブロ集合疎行列面心立方構造fcc不純物問題非線型方程式ソルバフィルタL10構造PGA半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度三次元CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタル正規分布フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt縮退キーボード軸ラベルグラフの分割凡例トラックボールPC不規則局所モーメント片対数グラフトランス両対数グラフCK1026MAS830L直流解析Excel円周率パラメータ・モデルヒストグラム日本語最小二乗法等価回路モデルGimp線種シンボルTS-110TS-112PIC16F785LMC662化学反応文字列specx.f入出力ifortマテリアルデザインヒストグラム確率論Realforce等高線ジバニャン方程式P-10Ubuntuナイキスト線図Crank-Nicolson法陰解法熱拡散方程式HiLAPWAACircuit連立一次方程式負帰還安定性境界条件EAGLEMBE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ