Scilabでデータの補間

Scilabで数値積分:地球深部の密度と圧力では表として与えられているデータの数値積分を行いました。今回は表として与えられているデータの、データとデータの間の値を推定する、データの補間(内挿)の方法について書きます。

001_201311132310181fb.png

Fig.1: PREMの表に載っている地球の外核の密度(青丸)とその補間値(赤線)



Fig.1は、地球の半径1221.5kmから3480kmに位置する「外核」の密度です。
青の丸で示してあるのが、地震波観測から得られた一次元地球内部モデルPREM (Dziewonski and Anderson, 1981)です。PREMの表には半径200kmおきに密度などのデータが記載されています。しかしながら、例えば半径2500kmでの密度の値が知りたいとしても値が書いてありません。
こういうときには、どうすればよいでしょうか?いまの例だと、例えば、2400kmでの値と2600kmでの値が載っているので、平均を取るということも出来ます。

このように2点の間の点の値を2点間を結ぶ直線上の値として計算する方法を線形補間といいます。Scilabで数値積分:地球深部の密度と圧力で積分を計算するときに行ったのも実を言うとこれでした。

赤の実線でプロットされているのがPREMのデータからスプライン曲線で補間(内挿)をおこなったものです。
補間にはinterp1を利用しました。

[yp]=interp1(x, y, xp [, method,[extrapolation]])


x,yが保管される元となるデータでxpが補間したい値です。
xpは単一の数値でも、ベクトルでも大丈夫です。今回の例の様にxpにベクトルを入力するとypもベクトルで返ってきます。
今回の例ではスプライン補間をするため、methodの部分には'spline'を指定します。

補間の種類


Scilabの補間の方法には'spline','linear','nearest'の3種類が指定できます。
これらの違いを示すために3種類のプロットを行ったのがFig.2です。

002_20131113231018937.png

Fig.2: 3種類の補間の違い。スプライン補間(赤)、線形補間(青)、最近接データのプロット(緑)


赤のスプライン補間と青の線形補間はほとんど同じ値を示していますが、よく見るとスプライン補間の曲線のほうが上にt凸な形をしています。

少ないデータ点からグラフを滑らかに書くのには便利ですが、補間曲線の種類によって値が変わってしまうので値自体に過信は禁物です。

clear;
format('e',12);

// *** PREMのテーブルを読み出し ***
X = fscanfMat('PREM.txt');
Radius = 1E3 * X(:,1); // 半径 (m)
Vp = X(:,2); // P波速度 (m/s)
Vs = X(:,3); // S波速度 (m/s)
RHO = 1E3 * X(:,4); // 密度 (g/m^3)
Ks = 1E12 * X(:,5); // 断熱体積弾性率(Pa)
Mu = 1E12 * X(:,6); // 剛性率(Pa)
Nu = 1E12 * X(:,7); //
Pressure = 1E12 * X(:,8); // 圧力(Pa)
Gravity = X(:,9); // 重力加速度 (m/s^2)

// 半径と密度の外核の部分だけ取り出し
OCR = Radius(9:21); // 外核の半径 Outer Core Radius
OCD = RHO(9:21); // 外核の密度 Outer Core Density

// *** 内挿 ***
OCRp = linspace(OCR(1),OCR($));
OCDp = interp1(OCR,OCD,OCRp,'spline');

// *** プロット ***
// 外核全領域のプロット
scf(0);
plot(1E-3 * OCRp, 1E-3 * OCDp,'-r');
plot(1E-3 * Radius(9:21),1E-3 * RHO(9:21),'ob');
ylabel("Density (kg/s^3)");
xlabel("Radius (km)");

// 2300-2700kmの領域のプロット
scf(1);
//xsetech([0,0,0.95,0.95]);
// スプライン曲線による補間
plot(1E-3 * OCRp, 1E-3 * interp1(OCR,OCD,OCRp,'spline'),'-r');
// 線形補間
plot(1E-3 * OCRp, 1E-3 * interp1(OCR,OCD,OCRp,'linear'),'--b');
// 最近接データの値による補間
plot(1E-3 * OCRp, 1E-3 * interp1(OCR,OCD,OCRp,'nearest'),'-.g');
plot(1E-3 * Radius(9:21),1E-3 * RHO(9:21),'ob');
zoom_rect([2300,11050,2700,11350]);
legend(['spline','linear','nearest']);
ylabel("Density (kg/s^3)");
xlabel("Radius (km)");


関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 補間 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj常微分方程式モンテカルロ解析状態密度トランジスタodeDOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト分散関係レベルシフト乱数HP6632AR6452A可変抵抗トランジスタ技術温度解析ブレッドボードI2C反強磁性確率論数値積分セミナーバンドギャップバンド構造偏微分方程式非線形方程式ソルバ熱設計絶縁ISO-I2Cカオス三端子レギュレータLM358GW近似マフィンティン半径A/DコンバータフォトカプラシュミットトリガLEDPC817C発振回路数値微分直流動作点解析サーボカレントミラーTL431アナログスイッチUSB74HC4053bzqltyVESTA補間電子負荷アセンブライジング模型BSch量子力学単振り子2ちゃんねるチョッパアンプLDA開発環境基本並進ベクトルFFT標準ロジックブラべ格子パラメトリック解析抵抗SMPMaxima失敗談ラプラス方程式繰り返し位相図スイッチト・キャパシタ熱伝導状態方程式キュリー温度gfortranコバルトTLP621不規則合金Quantum_ESPRESSO六方最密充填構造ランダムウォーク相対論ewidthスピン軌道相互作用FETQSGWVCAcygwinスレーターポーリング曲線GGA仮想結晶近似PWscfシュレディンガー方程式LM555ハーフメタル固有値問題NE555最小値ガイガー管QNAPUPS自動計測ダイヤモンドマントルTLP552格子比熱最適化MCU井戸型ポテンシャル最大値xcrysdenCIF条件分岐詰め回路フェルミ面差し込みグラフスーパーセルfsolveブラウン運動awk過渡解析起電力三角波第一原理計算FXA-7020ZRWriter509Ubuntuテスタ熱力学データロガーTLP521OpenMPubuntu平均場近似MAS830LトランスCK1026PIC16F785PGA2SC1815EAGLEノコギリ波負帰還安定性ナイキスト線図MBEOPA2277P-10フィルタCapSenseAACircuitLMC662文字列固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型電荷密度重積分SIC二相共存磁気モーメント不純物問題PWgui擬ポテンシャルゼーベック係数ZnOウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデルcif2cell入出力陰解法熱拡散方程式HiLAPW両対数グラフCrank-Nicolson法連立一次方程式specx.fifort境界条件片対数グラフグラフの分割円周率ヒストグラム不規則局所モーメントGimpシンボル軸ラベル凡例線種トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ