スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。


Scilabで数値微分 その2

Scilabで数値微分 その1に引き続き数値計算の常識に従ってf(x)=sin(x)の数値微分を行いました。

今回は刻み幅hを可変させたときのf(x,h)の値の変化から、誤差が最小となるhの最適値を探しました。


Scilabで数値微分 その1では数値計算の常識に従ってf(x)=sin(x)のx=0.3πにおける微分値を計算しf'(x)=cos(x)との比較を行いました。

その結果、微分を差分に置き換える際の刻み幅hには最適値があり、大きすぎても小さすぎても良くないということがわかりました。

Scilabで数値微分 その1はf(x)=sin(x)のような簡単な関数だったので、あらかじめ解析的に微分を行うことが出来ました。しかしながらScilabで金属の電子比熱の様にf(x)の計算自体に非線形方程式ソルバを使うような複雑な場合は、真の値と比較して最適なhを探すことは出来ません。むしろ、解析的に微分が出来るような場合は、そもそも数値的に微分をする必要が無いとも言えるので、解析的に微分できないときにどのように最適なhを探すのかというのは重要な問題です。

実践的な刻み幅の決定法


数値計算の常識には以下の様にあります。

実践的には,f1(x,h)とf1(x,2h)との"差"を観察して,
「hを半分にしたとき"差"が約半分になる傾向が保たれる範囲でもっとも小さなh」
をえらぶのがよい.


そこでこの計算をScilabで行います。

Scilabプログラム


作成したScilabのプログラムはdiff2_sce.txtとなりました。

clear;

// *** 刻み幅の設定 ***
n = [0:1:50];
h = 2 ^ (- n);

x = 0.3 * %pi;

// *** 微分の近似値 ***
// 前進差分
f1 = (sin(x + h) - sin(x)) ./ h;
f12 = (sin(x + 2 * h) - sin(x)) ./ (2 * h);
// 中心差分
f2 = (sin(x + h) - sin(x - h)) ./ (2 * h);
f22 = (sin(x + 2 * h) - sin(x - 2 * h)) ./ (4 * h);
// 前進差分に対するRomberg 1段公式
romberg1 = 2 * ((sin(x + h) - sin(x)) ./ h - 0.5 * (sin(x + 2 * h) - sin(x)) ./ (2 * h));
romberg12 = 2 * ((sin(x + 2 * h) - sin(x)) ./ (2 * h) - 0.5 * (sin(x + 4 * h) - sin(x)) ./ (4 * h));
// 中心差分に対するRomberg 1段
romberg2 = ((sin(x + h) - sin(x - h)) ./ (2 * h) - 0.25 * (sin(x + 2 * h) - sin(x - 2 * h)) ./ (4 * h)) / 0.75;
romberg22 = ((sin(x + 2 * h) - sin(x - 2 * h)) ./ (4 * h) - 0.25 * (sin(x + 4 * h) - sin(x - 4 * h)) ./ (8 * h)) / 0.75;

// *** グラフの軸設定 ***
a = gca();
a.data_bounds = [0,1E-14;50,1];
a.log_flags = "nl";

// *** グラフのプロット ***
plot(n,abs(f1 - f12),'-sr');
plot(n,abs(f2 - f22),'-sm');
plot(n,abs(romberg1 - romberg12),'-sb');
plot(n,abs(romberg2 - romberg22),'-sg');

// *** グラフの体裁 ***
xlabel("n");
ylabel("Err");
legend(['f1(x)','f2(x)','Romberg f1(x)','Romberg f2(x)'],4);


結果


Scilabで数値微分 その1で計算した数値微分と解析解の比較「f(x,h)-f'(x)」をFig.1に、今回計算した「f(x,h)-f(x,2h)」をFig.2に示します。これらは非常に良く似た形をしていますが全くの別物です。

001_20131110042107c73.png

Fig.1: 数値微分と解析解の比較

002_20131110080640da7.png
Fig.2: 数値微分の刻み幅を2倍にしたときの変化の度合い


数値計算の常識には以下の様にあります。

このような"差分"が「規則的に変化している」ことが,「打切り誤差が丸め誤差より優越していて,通常の打切り誤差の漸近理論が適用できる」ことの実際的な判別法として役立つ.


Fig.2をみるとnを大きくしていっても(つまりhを小さくしていっても)規則的に"差分"が小さくなっていっている部分が、丸め誤差の影響を受けず、打切り誤差が支配的となっている領域です。この範囲でもっとも大きなn(もっとも小さなh)を選んだとき、実際の誤差がほぼ最小になっていることがFig.1との比較から読み取れます。

関連エントリ




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 数値微分 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式トランジスタodeDOSインターフェースPDS5022定電流スイッチング回路分散関係半導体シェルスクリプトレベルシフト乱数HP6632A可変抵抗トランジスタ技術R6452AI2C温度解析ブレッドボードバンドギャップ確率論反強磁性セミナーバンド構造数値積分偏微分方程式非線形方程式ソルバ熱設計絶縁三端子レギュレータISO-I2CA/DコンバータシュミットトリガフォトカプラカオスPWscfGW近似LM358LEDマフィンティン半径発振回路USB数値微分TL431PC817Cサーボアナログスイッチ直流動作点解析補間カレントミラー74HC4053bzqltyチョッパアンプFFT2ちゃんねる開発環境量子力学単振り子電子負荷VESTAQuantumESPRESSO標準ロジックパラメトリック解析ブラべ格子イジング模型アセンブラLDA基本並進ベクトルBSchSMPTLP621失敗談六方最密充填構造コバルト位相図QSGWGGAスイッチト・キャパシタewidth状態方程式VCAキュリー温度繰り返し最適化仮想結晶近似不規則合金熱伝導gfortran相対論抵抗FETMaximaQuantum_ESPRESSOcygwinランダムウォークラプラス方程式スピン軌道相互作用スレーターポーリング曲線マントルシュレディンガー方程式ZnO自動計測QNAP固有値問題ダイヤモンドデータロガー井戸型ポテンシャルTLP552CIFxcrysdenゼーベック係数熱力学条件分岐MCU最小値UPS格子比熱最大値ガイガー管平均場近似過渡解析Writer509スーパーセルFXA-7020ZR差し込みグラフ第一原理計算テスタ起電力OpenMP三角波ubuntuLM555NE555ブラウン運動詰め回路ハーフメタルawkfsolveUbuntuフェルミ面TLP521トランスMAS830LPGACK1026OPA2277フィルタトレーナーバトルEAGLEノコギリ波負帰還安定性ナイキスト線図MBEP-10LMC6622SC1815CapSenseAACircuitPIC16F785入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式ヒストグラム確率論初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分SIC不純物問題擬ポテンシャル状態図cif2cellPWgui二相共存ウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造マテリアルデザインspecx.fフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列ポケモンGO熱拡散方程式HiLAPW両対数グラフ片対数グラフ陰解法Crank-Nicolson法ifort境界条件連立一次方程式グラフの分割軸ラベルヒストグラム不規則局所モーメントスーパーリーグ円周率Gimp凡例線種シンボルトラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。