Scilabで数値微分 その2

Scilabで数値微分 その1に引き続き数値計算の常識に従ってf(x)=sin(x)の数値微分を行いました。

今回は刻み幅hを可変させたときのf(x,h)の値の変化から、誤差が最小となるhの最適値を探しました。


Scilabで数値微分 その1では数値計算の常識に従ってf(x)=sin(x)のx=0.3πにおける微分値を計算しf'(x)=cos(x)との比較を行いました。

その結果、微分を差分に置き換える際の刻み幅hには最適値があり、大きすぎても小さすぎても良くないということがわかりました。

Scilabで数値微分 その1はf(x)=sin(x)のような簡単な関数だったので、あらかじめ解析的に微分を行うことが出来ました。しかしながらScilabで金属の電子比熱の様にf(x)の計算自体に非線形方程式ソルバを使うような複雑な場合は、真の値と比較して最適なhを探すことは出来ません。むしろ、解析的に微分が出来るような場合は、そもそも数値的に微分をする必要が無いとも言えるので、解析的に微分できないときにどのように最適なhを探すのかというのは重要な問題です。

実践的な刻み幅の決定法


数値計算の常識には以下の様にあります。

実践的には,f1(x,h)とf1(x,2h)との"差"を観察して,
「hを半分にしたとき"差"が約半分になる傾向が保たれる範囲でもっとも小さなh」
をえらぶのがよい.


そこでこの計算をScilabで行います。

Scilabプログラム


作成したScilabのプログラムはdiff2_sce.txtとなりました。

clear;

// *** 刻み幅の設定 ***
n = [0:1:50];
h = 2 ^ (- n);

x = 0.3 * %pi;

// *** 微分の近似値 ***
// 前進差分
f1 = (sin(x + h) - sin(x)) ./ h;
f12 = (sin(x + 2 * h) - sin(x)) ./ (2 * h);
// 中心差分
f2 = (sin(x + h) - sin(x - h)) ./ (2 * h);
f22 = (sin(x + 2 * h) - sin(x - 2 * h)) ./ (4 * h);
// 前進差分に対するRomberg 1段公式
romberg1 = 2 * ((sin(x + h) - sin(x)) ./ h - 0.5 * (sin(x + 2 * h) - sin(x)) ./ (2 * h));
romberg12 = 2 * ((sin(x + 2 * h) - sin(x)) ./ (2 * h) - 0.5 * (sin(x + 4 * h) - sin(x)) ./ (4 * h));
// 中心差分に対するRomberg 1段
romberg2 = ((sin(x + h) - sin(x - h)) ./ (2 * h) - 0.25 * (sin(x + 2 * h) - sin(x - 2 * h)) ./ (4 * h)) / 0.75;
romberg22 = ((sin(x + 2 * h) - sin(x - 2 * h)) ./ (4 * h) - 0.25 * (sin(x + 4 * h) - sin(x - 4 * h)) ./ (8 * h)) / 0.75;

// *** グラフの軸設定 ***
a = gca();
a.data_bounds = [0,1E-14;50,1];
a.log_flags = "nl";

// *** グラフのプロット ***
plot(n,abs(f1 - f12),'-sr');
plot(n,abs(f2 - f22),'-sm');
plot(n,abs(romberg1 - romberg12),'-sb');
plot(n,abs(romberg2 - romberg22),'-sg');

// *** グラフの体裁 ***
xlabel("n");
ylabel("Err");
legend(['f1(x)','f2(x)','Romberg f1(x)','Romberg f2(x)'],4);


結果


Scilabで数値微分 その1で計算した数値微分と解析解の比較「f(x,h)-f'(x)」をFig.1に、今回計算した「f(x,h)-f(x,2h)」をFig.2に示します。これらは非常に良く似た形をしていますが全くの別物です。

001_20131110042107c73.png

Fig.1: 数値微分と解析解の比較

002_20131110080640da7.png
Fig.2: 数値微分の刻み幅を2倍にしたときの変化の度合い


数値計算の常識には以下の様にあります。

このような"差分"が「規則的に変化している」ことが,「打切り誤差が丸め誤差より優越していて,通常の打切り誤差の漸近理論が適用できる」ことの実際的な判別法として役立つ.


Fig.2をみるとnを大きくしていっても(つまりhを小さくしていっても)規則的に"差分"が小さくなっていっている部分が、丸め誤差の影響を受けず、打切り誤差が支配的となっている領域です。この範囲でもっとも大きなn(もっとも小さなh)を選んだとき、実際の誤差がほぼ最小になっていることがFig.1との比較から読み取れます。

関連エントリ




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 数値微分 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPA強磁性PICモンテカルロ解析常微分方程式odeトランジスタecalj状態密度DOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析分散関係I2Cトランジスタ技術R6452A可変抵抗ブレッドボードセミナーバンドギャップ数値積分確率論反強磁性偏微分方程式バンド構造絶縁熱設計非線形方程式ソルバフォトカプラシュミットトリガLEDLM358カオスISO-I2C三端子レギュレータGW近似A/Dコンバータカレントミラーアナログスイッチ数値微分マフィンティン半径TL431発振回路サーボPC817CUSB直流動作点解析74HC4053補間FFTBSch開発環境パラメトリック解析2ちゃんねるチョッパアンプ量子力学bzqlty電子負荷イジング模型LDA標準ロジックアセンブラ基本並進ベクトルブラべ格子単振り子熱伝導位相図TLP621キュリー温度繰り返し状態方程式MaximaVESTAスイッチト・キャパシタ相対論FETランダムウォークスピン軌道相互作用SMP六方最密充填構造抵抗不規則合金ewidthスレーターポーリング曲線GGAラプラス方程式cygwingfortranQSGW失敗談コバルト条件分岐TLP521テスタLM555Writer509TLP552格子比熱マントルデータロガー自動計測詰め回路ガイガー管ダイヤモンドQNAPMCUFXA-7020ZR過渡解析三角波UPSNE555固有値問題熱力学ブラウン運動フェルミ面awk起電力第一原理計算OpenMPfsolveubuntu最大値xcrysden最小値最適化仮想結晶近似VCA差し込みグラフスーパーセル井戸型ポテンシャル平均場近似シュレディンガー方程式FSMフラクタルOPA2277固定スピンモーメント2SC1815全エネルギー合金multiplotgnuplotc/aTeX結晶磁気異方性interp1ウィグナーザイツ胞初期値マンデルブロ集合疎行列面心立方構造fcc不純物問題非線型方程式ソルバフィルタL10構造PGA半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度三次元CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタル正規分布フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt縮退キーボード軸ラベルグラフの分割凡例トラックボールPC不規則局所モーメント片対数グラフトランス両対数グラフCK1026MAS830L直流解析Excel円周率パラメータ・モデルヒストグラム日本語最小二乗法等価回路モデルGimp線種シンボルTS-110TS-112PIC16F785LMC662化学反応文字列specx.f入出力ifortマテリアルデザインヒストグラム確率論Realforce等高線ジバニャン方程式P-10Ubuntuナイキスト線図Crank-Nicolson法陰解法熱拡散方程式HiLAPWAACircuit連立一次方程式負帰還安定性境界条件EAGLEMBE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ