Scilabで数値微分 その1

数値計算から関数の微分を求めようと考えたとき、微分の定義の通りに差分を計算すれば良いということはすぐに思いつきます。

f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}

上記の式のhを次第に小さくしていけばf'(x)の近似値が得られます。
しかしながらhの数を小さくしすぎると数値計算の丸め誤差の影響で逆にf'(x)の値からずれていってしまうことが知られています。

これに関連する重要なポイントをまとめると以下の3つになります。

  • 倍精度浮動小数点数を使い丸め誤差を小さくする
  • 打切り誤差の小さいアルゴリズムを使う
  • 丸め誤差と打切り誤差のトータルで誤差が小さくなるhを探す


Scilabは特に指定をしなくても倍精度浮動小数点数演算をしてくれるので、今回は数値計算の常識に倣って数値微分の式とhの大きさを色々と変更したときに誤差の大きさがどのようになるのかを見てみます。


数値微分の近似式


数値微分を計算する公式として数値計算の常識に倣って前進差分f1(x)、中心差分f2(x)、及びそれらのRomberg 1段公式を用いました。

前進差分
f_1(x,h) = \frac{f(x+h)-f(x)}{h}

中心差分
f_2(x,h) = \frac{f(x+h)-f(x-h)}{2h}

前進差分に対するRomberg 1段
\frac{f_1(x,h)-\frac{1}{2}f_1(x,2h)}{1-\frac{1}{2}}

中心差分に対するRomberg 1段
\frac{f_2(x,h)-\frac{1}{4}f_2(x,2h)}{1-\frac{1}{4}}

Scilabプログラム


実際に計算する関数は普通のサイン関数f(x)=sin(x)とします。
当然ながら解析的に微分が可能でf'(x)=cos(x)です。

数値計算の常識と同様にx=0.3πのときの微分を計算します。

微分の刻み幅hは
h = 2^{-n}

とし、nが大きくなるほどhは小さくなります。

作成したScilabのプログラムはdiff_sce.txtです。

clear;

// *** 刻み幅の設定 ***
n = [0:1:50];
h = 2 ^ (- n);

x = 0.3 * %pi;

// *** 微分の近似値 ***
// 前進差分
f1 = (sin(x + h) - sin(x)) ./ h;
// 中心差分
f2 = (sin(x + h) - sin(x - h)) ./ (2 * h);
// 前進差分に対するRomberg 1段公式
romberg1 = 2 * ((sin(x + h) - sin(x)) ./ h - 0.5 * (sin(x + 2 * h) - sin(x)) ./ (2 * h));
// 中心差分に対するRomberg 1段
romberg2 = ((sin(x + h) - sin(x - h)) ./ (2 * h) - 0.25 * (sin(x + 2 * h) - sin(x - 2 * h)) ./ (4 * h)) / 0.75;

// *** グラフの軸設定 ***
a = gca();
a.data_bounds = [0,1E-16;50,1];
a.log_flags = "nl";

// *** グラフのプロット ***
plot(n,abs(f1 - cos(x)),'-sr');
plot(n,abs(f2 - cos(x)),'-sm');
plot(n,abs(romberg1 - cos(x)),'-sb');
plot(n,abs(romberg2 - cos(x)),'-sg');

// *** グラフの体裁 ***
xlabel("n");
ylabel("Err");
legend(['f1(x)','f2(x)','Romberg f1(x)','Romberg f2(x)'],4);


結果


以下に示すFig.1は上記の4つの式で計算したf(x)のx=0.3πでの微分の値とf'(x)=cos(x)の値の差の絶対値を取ったものです。
この2つの差が数値計算の誤差ということになります。

001_20131110042107c73.png

Fig.1: 数値微分と解析的な微分の間の関係。縦軸は誤差の絶対値、横軸はnで、nが大きくなるほどhは小さくなる(h = 2-n)。


まずn>25では、全てのグラフにおいて同じ挙動を示しています。これが丸め誤差によるものでどの式を使っても丸め誤差の問題は改善されないことが分かります。

次にnが小さい側、すなわち打切り誤差の影響を見てみます。
前進差分f1(x)(赤)と中心差分f2(x)(ピンク)を比べてみると、nが小さいとき中心差分f2(x)(ピンク)の方が誤差が小さくなることが分かります。

また前進差分f1(x)(赤)とそのRomberg 1段(青)を比較すると、Romberg 1段(青)で打切り誤差が改善していることが見て取れます。

中心差分f2(x)(ピンク)とf1(x)に対するRomberg 1段(青)では誤差はほとんど変わりませんが、中心差分f2(x)(ピンク)にさらにRomberg 1段(緑)をおこなうとこれら4つの式の中で最も誤差の少ない式に出来ることがわかります。

関連エントリ




付録


このエントリで使用したScilabのプログラムを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 数値微分 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj常微分方程式モンテカルロ解析状態密度トランジスタodeDOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト分散関係レベルシフト乱数HP6632AR6452A可変抵抗トランジスタ技術温度解析ブレッドボードI2C反強磁性確率論数値積分セミナーバンドギャップバンド構造偏微分方程式非線形方程式ソルバ熱設計絶縁ISO-I2Cカオス三端子レギュレータLM358GW近似マフィンティン半径A/DコンバータフォトカプラシュミットトリガLEDPC817C発振回路数値微分直流動作点解析サーボカレントミラーTL431アナログスイッチUSB74HC4053bzqltyVESTA補間電子負荷アセンブライジング模型BSch量子力学単振り子2ちゃんねるチョッパアンプLDA開発環境基本並進ベクトルFFT標準ロジックブラべ格子パラメトリック解析抵抗SMPMaxima失敗談ラプラス方程式繰り返し位相図スイッチト・キャパシタ熱伝導状態方程式キュリー温度gfortranコバルトTLP621不規則合金Quantum_ESPRESSO六方最密充填構造ランダムウォーク相対論ewidthスピン軌道相互作用FETQSGWVCAcygwinスレーターポーリング曲線GGA仮想結晶近似PWscfシュレディンガー方程式LM555ハーフメタル固有値問題NE555最小値ガイガー管QNAPUPS自動計測ダイヤモンドマントルTLP552格子比熱最適化MCU井戸型ポテンシャル最大値xcrysdenCIF条件分岐詰め回路フェルミ面差し込みグラフスーパーセルfsolveブラウン運動awk過渡解析起電力三角波第一原理計算FXA-7020ZRWriter509Ubuntuテスタ熱力学データロガーTLP521OpenMPubuntu平均場近似MAS830LトランスCK1026PIC16F785PGA2SC1815EAGLEノコギリ波負帰還安定性ナイキスト線図MBEOPA2277P-10フィルタCapSenseAACircuitLMC662文字列固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型電荷密度重積分SIC二相共存磁気モーメント不純物問題PWgui擬ポテンシャルゼーベック係数ZnOウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデルcif2cell入出力陰解法熱拡散方程式HiLAPW両対数グラフCrank-Nicolson法連立一次方程式specx.fifort境界条件片対数グラフグラフの分割円周率ヒストグラム不規則局所モーメントGimpシンボル軸ラベル凡例線種トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ