Scilabで一次元井戸型ポテンシャル

微分方程式による物理現象のモデル化(PDF)では、Octaveを用いていろいろな物理現象の数値計算を行っています。
今回は、その中のひとつである量子力学の問題をScilabでプログラミングします。

002_2013080422573295f.png

Fig.1: 無限高さの井戸型ポテンシャルの中に有限高さのポテンシャル壁がある場合



時間に依存しないシュレディンガー方程式


一次元のシュレディンガー方程式は、以下の様にあらわされます。

i \hbar \frac{\partial \psi(x,t)}{\partial t} = \left(- \frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x) \right)\psi(x,t)

ここで

H = - \frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)

をハミルトニアンと呼びます。ハミルトニアンが時間に依存しないときは、波動関数ψ(x,t)は

\psi(x,t) = \phi(x)\exp\left(-\frac{i E t}{\hbar} \right)

のように変数分離できます。

このとき、以下のように時間に依存しないシュレディンガー方程式がえられます。(最早、変数がxだけになったので∂2/∂x2はd2/dx2と書きます。)

\left(-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x) \right) \phi(x) = E \phi(x)

まず、数値計算をする上で定数の係数は面倒なだけなので、原子単位系のように

\frac{\hbar^2}{2m} = 1

と置きます。時間に依存しないシュレディンガー方程式をもう一度書き直すと

\left(-\frac{\mathrm{d}^2}{\mathrm{d} x^2} + V(x) \right)\phi(x) = E \phi(x)

となり、ハミルトニアンは

H = -\frac{\mathrm{d}^2}{\mathrm{d} x^2}+V(x)

となります。

今回はこの方程式をScilabによって数値的に解きます。

固有値問題


行列A、ベクトルxに対して

Ax = \lambda x

を満たすλ(スカラー)を行列Aの固有値、xを固有ベクトルといいます。

時間に依存しないシュレディンガー方程式もこの形をしており

H \phi = E \phi

A = H: ハミルトニアン
x = φ: 固有ベクトル = 波動関数
λ = E: 固有値 = 固有エネルギー

という関連になっています。

行列Aに対する固有値と固有ベクトルの組み合わせは複数あります。
Scilabではspecで簡単に計算することが出来ます。(参考:固有値問題)

固有ベクトルV, 対角成分に固有値λを並べた行列Dは
[V, D] = spec(A);

で計算できます。

D = <br />\left(<br />\begin{array}{cccc}<br />\lambda_1 & 0 & \hdots & 0 \\<br />0 & \lambda_2 & & \vdots \\<br />\vdots & & \ddots & 0 \\<br />0 & \hdots & 0 & \lambda_n<br />\end{array}<br />\right)  V = <br />\left\{<br />\left(<br />\begin{array}{c}<br />x_{1,1} \\<br />x_{2,1} \\<br />\vdots \\<br />x_{n,1}<br />\end{array}<br />\right)<br />\cdots<br />\left(<br />\begin{array}{c}<br />x_{1,n} \\<br />x_{2,n} \\<br />\vdots \\<br />x_{n,n}<br />\end{array}<br />\right)<br />\right\}

したがって、時間に依存しないシュレディンガー方程式を解くために必要なことは、行列A、すなわちハミルトニアンHをどのような行列としてあらわすかという問題であると言えます。

ハミルトニアンを行列として表現する


基本的な考え方はシュレーディンガー方程式を行列風に描くの通りです。

まずハミルトニアンの前半部分である∂2/∂x2から行きます。
微分の定義から、充分小さいhを考えれば、微分は差分に置き換えることが出来ます。

\frac{\mathrm{d}}{\mathrm{d}x}\phi(x) = \frac{\phi(x+h)-\phi(x)}{h}

\frac{\mathrm{d}}{\mathrm{d}x}\left( \frac{\mathrm{d}}{\mathrm{d}x}\phi(x) \right) = \frac{\frac{\phi(x+h)-\phi(x)}{h}-\frac{\phi(x)-\phi(x-h)}{h}}{h}

2階の微分はこれらを組み合わせて

\begin{eqnarray*}<br />\frac{\mathrm{d}}{\mathrm{d}x}\left( \frac{\mathrm{d}}{\mathrm{d}x}\phi(x) \right) & = & \frac{\frac{\phi(x+h)-\phi(x)}{h}-\frac{\phi(x)-\phi(x-h)}{h}}{h} \\<br />& = & \frac{\phi(x+h)-2\phi(x)+\phi(x-h)}{h^2}<br />\end{eqnarray*}

シュレーディンガー方程式を行列風に描くに倣って行列風に書き下すと

- \frac{\mathrm{d}^2}{\mathrm{d}x^2} = <br />\left(<br />\begin{array}{ccccccc}<br />\frac{2}{h^2} & -\frac{1}{h^2} & 0 & \hdots & & \hdots & 0 \\<br />-\frac{1}{h^2} & \frac{2}{h^2} & -\frac{1}{h^2} & 0 & \hdots & & \vdots \\<br />0 & -\frac{1}{h^2} & \frac{2}{h^2} & -\frac{1}{h^2} & 0 & \hdots & \\<br />\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\<br />& \hdots & 0 & -\frac{1}{h^2} & \frac{2}{h^2} & -\frac{1}{h^2} & 0 \\<br />\vdots &  & \hdots & 0 & -\frac{1}{h^2} & \frac{2}{h^2} & -\frac{1}{h^2} \\<br />0 & \hdots &  & \hdots & 0 & -\frac{1}{h^2} & \frac{2}{h^2}<br />\end{array}<br />\right)


ポテンシャルは、対角成分にポテンシャルの値を入力するだけです。
xiにおけるポテンシャルをvi=V(xi)とおくと、最終的なハミルトニアンは以下のようになります。

\begin{eqnarray*}<br />H &=& - \frac{\mathrm{d}^2}{\mathrm{d}x^2} + V \\<br />&=& \left(<br />\begin{array}{ccccccc}<br />\frac{2}{h^2} + v_1 & -\frac{1}{h^2} & 0 & \hdots & & \hdots & 0 \\<br />-\frac{1}{h^2} & \frac{2}{h^2} + v_2 & -\frac{1}{h^2} & 0 & \hdots & & \vdots \\<br />0 & -\frac{1}{h^2} & \frac{2}{h^2} + v_3 & -\frac{1}{h^2} & 0 & \hdots & \\<br />\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\<br />& \hdots & 0 & -\frac{1}{h^2} & \frac{2}{h^2} + v_{n-2} & -\frac{1}{h^2} & 0 \\<br />\vdots &  & \hdots & 0 & -\frac{1}{h^2} & \frac{2}{h^2} + v_{n-1} & -\frac{1}{h^2} \\<br />0 & \hdots &  & \hdots & 0 & -\frac{1}{h^2} & \frac{2}{h^2} + v_n<br />\end{array}<br />\right)<br />\end{eqnarray*}<br />


井戸型ポテンシャルの中央にポテンシャル壁がある場合


微分方程式による物理現象のモデル化(PDF)に従って、井戸型ポテンシャルの中央に有限の高さのポテンシャル壁がある場合の計算を行います。

中心からw0の幅に高さv0のポテンシャルがある場合のプログラムを書きます。

プログラムはeigen_sce.txtです。

まずはv0=0の場合、いわゆる普通の無限高さの井戸型ポテンシャルのなかの波動関数の計算です。

001_201308042257325d7.png

Fig.2: 無限高さの井戸型ポテンシャルの中の波動関数


更にv0=100のときの波動関数を計算したものが冒頭のものになります。

関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 固有値問題 シュレディンガー方程式 井戸型ポテンシャル 量子力学 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPA強磁性PICモンテカルロ解析常微分方程式odeトランジスタecalj状態密度DOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析分散関係I2Cトランジスタ技術R6452A可変抵抗ブレッドボードセミナーバンドギャップ数値積分確率論反強磁性偏微分方程式バンド構造絶縁熱設計非線形方程式ソルバフォトカプラシュミットトリガLEDLM358カオスISO-I2C三端子レギュレータGW近似A/Dコンバータカレントミラーアナログスイッチ数値微分マフィンティン半径TL431発振回路サーボPC817CUSB直流動作点解析74HC4053補間FFTBSch開発環境パラメトリック解析2ちゃんねるチョッパアンプ量子力学bzqlty電子負荷イジング模型LDA標準ロジックアセンブラ基本並進ベクトルブラべ格子単振り子熱伝導位相図TLP621キュリー温度繰り返し状態方程式MaximaVESTAスイッチト・キャパシタ相対論FETランダムウォークスピン軌道相互作用SMP六方最密充填構造抵抗不規則合金ewidthスレーターポーリング曲線GGAラプラス方程式cygwingfortranQSGW失敗談コバルト条件分岐TLP521テスタLM555Writer509TLP552格子比熱マントルデータロガー自動計測詰め回路ガイガー管ダイヤモンドQNAPMCUFXA-7020ZR過渡解析三角波UPSNE555固有値問題熱力学ブラウン運動フェルミ面awk起電力第一原理計算OpenMPfsolveubuntu最大値xcrysden最小値最適化仮想結晶近似VCA差し込みグラフスーパーセル井戸型ポテンシャル平均場近似シュレディンガー方程式FSMフラクタルOPA2277固定スピンモーメント2SC1815全エネルギー合金multiplotgnuplotc/aTeX結晶磁気異方性interp1ウィグナーザイツ胞初期値マンデルブロ集合疎行列面心立方構造fcc不純物問題非線型方程式ソルバフィルタL10構造PGA半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度三次元CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタル正規分布フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt縮退キーボード軸ラベルグラフの分割凡例トラックボールPC不規則局所モーメント片対数グラフトランス両対数グラフCK1026MAS830L直流解析Excel円周率パラメータ・モデルヒストグラム日本語最小二乗法等価回路モデルGimp線種シンボルTS-110TS-112PIC16F785LMC662化学反応文字列specx.f入出力ifortマテリアルデザインヒストグラム確率論Realforce等高線ジバニャン方程式P-10Ubuntuナイキスト線図Crank-Nicolson法陰解法熱拡散方程式HiLAPWAACircuit連立一次方程式負帰還安定性境界条件EAGLEMBE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ