Scilabで荷電粒子の三次元運動

微分方程式による物理現象のモデル化(PDF)の直交電磁界中の荷電粒子のプログラムをScilabで再現します。
元PDFでも指摘されている通り、計算そのものよりも三次元的にプロットするほうが本題だと思います。

001_20130729175916.png

Fig.1: 荷電粒子の三次元運動。三次元プロットしたものとx-y平面にプロットしたもの。x-y平面にプロットしても実際の運動の様子はいまいち良く分からない。


また、元PDFではz方向の磁界とy方向の電界をパラメータとするプログラムを書いていますが、それ以外の方向にも書けるようにしておきます。


解くべき微分方程式は以下のように示されます。

\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \frac{q}{m} \vec{E} + \frac{q}{m} \vec{v}\times\vec{B}

Scilabのode関数で解くためには dX/dt = ...の形にします。要素が増えると分かり辛くなるので、ベクトルの中での順番が分かりやすいように要素を書き下します。

3200cfe9f5356627aee923664d453908_90_black.png

次に微分方程式もベクトルの要素を書き出します。

\frac{\mathrm{d}}{\mathrm{d}t}\begin{pmatrix}v_x \\v_y \\v_z\end{pmatrix}&=\frac{q}{m}\begin{pmatrix}E_x \\E_y \\E_z\end{pmatrix}+\frac{q}{m}\begin{pmatrix}v_x \\v_y \\v_z\end{pmatrix}\times\begin{pmatrix}B_x \\B_y \\B_z\end{pmatrix}\\&=\frac{q}{m}\begin{pmatrix}E_x \\E_y \\E_z\end{pmatrix}+\frac{q}{m}\begin{pmatrix}v_y B_z - v_z B_y \\v_z B_z - v_x B_z \\v_x B_y - v_y B_x\end{pmatrix}

これを踏まえたScilabのプログラムがemdrift_sce.txtです。
Scilabでカオスアトラクタではplot3d3を使いましたが、これは三次元曲面を描く命令で、三次元空間に曲線を引くのはparam3dで行うのが良いようです。

clear;

// *** 入力パラメータ ***
m = 1.0; // 粒子の質量
q = 1.0; // 粒子の電荷
// 一様磁界
bx = 0;
by = 0;
bz = 3.0;
// 一様電解
ex = 0;
ey = 1.5;
ez = 0;

// *** 解くべき常微分方程式の定義 ***
function dx = em(t,x)
// dx/dt = vx
dx(1) = x(2);
// dy/dt = vy
dx(3) = x(4);
// dz/dt = vz
dx(5) = x(6);
// dvx/dt = (q/m) * Ex + (q/m) * (vy*Bz-vz*By)
dx(2) = q * ex / m + q * (x(4) * bz - x(6) * by) / m;
// dvy/dt = (q/m) * Ey + (q/m) * (vz*Bx-vx*Bz)
dx(4) = q * ey / m + q * (x(6) * bx - x(2) * bz) / m;
// dvz/dt = (q/m) * Ez + (q/m) * (vx*By-vz*Bx)
dx(6) = q * ez / m + q * (x(2) * by - x(4) * bx) / m;
endfunction

// 時間ベクトル
T = linspace(0,20,201);

// 初期条件
x0 = 0;
vx0 = - 1;
y0 = 0;
vy0 = 0;
z0 = 0;
vz0 = 0.5;
X0 = [x0; vx0; y0; vy0; z0; vz0];

// 常微分方程式ソルバ
X = ode(X0,0,T,em);

// グラフのプロット
param3d(X(1,:),X(3,:),X(5,:),,flag=[5,4],ebox=[-5,5,-5,5,0,10]);
param3d(X(1,:),X(3,:),zeros(X(5,:)),flag=[5,4],ebox=[-5,5,-5,5,0,10]);
xlabel("x");
ylabel("y");
zlabel("z");



関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 常微分方程式 ode 三次元 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ