Scilabで単振り子 その3 ヤコビの楕円関数

Scilabで単振り子 その1 解析解との比較Scilabで単振り子 その2 近似解との比較と単振り子の運動を計算してきました(微分方程式による物理現象のモデル化(PDF)の例題5と問題20)。今回は、その1で計算した解析解を更に変形してヤコビの楕円関数で表したものを計算します(元PDF問題19)。

_\theta (t) = 2 \arcsin \left\{\sin\frac{\theta_0}{2} \mathrm{sn}\left(t\sqrt{\frac{g}{L}},\sin^2\frac{\theta_0}{2}\right) \right\}

ただし元PDFの説明が不親切なこともあり、2点ほど考えなければならない点があります。

一つ目は、元PDFの図21を見ても分かるとおりt=0(s)のときのθがθ0になっていない事です。プロットしてみれば分かりますが、ヤコビの楕円関数の式は、θ=0から最大振幅θ0となるような初角速度q0を与えたときの解となっています。

二つ目は、Scilabでヤコビの楕円関数をどのように呼び出すかということです。特に元PDFでは以下のように書かれているにもかかわらず、kが定義されていないので分かりづらいです。(それどころかリスト13 pendulum.mのなかで全く別の変数にkを使っていてとても紛らわしいです。)

Octave でJacobi の楕円関数を得るにはm = k2とおいて,以下のように呼び出します.
[sn, cn, dn] = ellipj(u,m)


これら2つの点について順に書きます。


初角速度q0の計算


001_20130720182725.png

Fig.1: 単振り子の問題設定


エネルギー保存則から

mgL(1-\cos\theta_0) = \frac{1}{2}mv_0^2

左辺はθ=θ0, q=0のときの(位置)エネルギーで、θ=0,q=q0のときの速度をv0とすると右辺はθ=0のときの(運動)エネルギーです。

従って初速度v0

v_0 = \sqrt{2gL(1-\cos\theta_0)}

初角速度は

q_0 = \frac{v_0}{L} = \sqrt{2\frac{g}{L}(1-\cos\theta_0)}

なお数値計算の常識によると倍角は使うな,半角を使えとのことなので、下記の倍角公式を使います。

\sin^2 x = \frac{1-\cos x}{2}

結局、θ=0から初角速度q0を与えたときに最大振幅がθ0となる初角速度q0

q_0 = 2 \sqrt{\frac{g}{L}}\sin^2\frac{\theta_0}{2}

となります。

ヤコビの楕円関数


単振り子の話(PDF)などをみると

\omega = \sqrt{\frac{g}{L}}

k = \sin \frac{\theta_0}{2}

というようにおくのが普通のようです。元PDFで定義されずに使われているkもこれだと思います。

Scilabではヤコビの楕円関数は%sn(x,m)で計算できます。(参考:%sn - ヤコビ楕円関数)

元PDFと同様に m=k2とおいて冒頭の式の形になります。

\theta(t) = 2 \arcsin \left\{ k \cdot \sin\left(\omega t, k^2\right)\right\}

計算結果


以上を踏まえて作成したプログラムがpendulum3_sce.txtです。

002_20130721152439.png

Fig.2: 最大振幅θ0=3のときの計算結果。常微分方程式ソルバで計算した結果(赤)とヤコビの楕円関数で計算した解析解(緑)が同じ結果を示している。


関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 常微分方程式 ode 単振り子 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj常微分方程式モンテカルロ解析状態密度トランジスタodeDOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト分散関係レベルシフト乱数HP6632AR6452A可変抵抗トランジスタ技術温度解析ブレッドボードI2C反強磁性確率論数値積分セミナーバンドギャップバンド構造偏微分方程式非線形方程式ソルバ熱設計絶縁ISO-I2Cカオス三端子レギュレータLM358GW近似マフィンティン半径A/DコンバータフォトカプラシュミットトリガLEDPC817C発振回路数値微分直流動作点解析サーボカレントミラーTL431アナログスイッチUSB74HC4053bzqltyVESTA補間電子負荷アセンブライジング模型BSch量子力学単振り子2ちゃんねるチョッパアンプLDA開発環境基本並進ベクトルFFT標準ロジックブラべ格子パラメトリック解析抵抗SMPMaxima失敗談ラプラス方程式繰り返し位相図スイッチト・キャパシタ熱伝導状態方程式キュリー温度gfortranコバルトTLP621不規則合金Quantum_ESPRESSO六方最密充填構造ランダムウォーク相対論ewidthスピン軌道相互作用FETQSGWVCAcygwinスレーターポーリング曲線GGA仮想結晶近似PWscfシュレディンガー方程式LM555ハーフメタル固有値問題NE555最小値ガイガー管QNAPUPS自動計測ダイヤモンドマントルTLP552格子比熱最適化MCU井戸型ポテンシャル最大値xcrysdenCIF条件分岐詰め回路フェルミ面差し込みグラフスーパーセルfsolveブラウン運動awk過渡解析起電力三角波第一原理計算FXA-7020ZRWriter509Ubuntuテスタ熱力学データロガーTLP521OpenMPubuntu平均場近似MAS830LトランスCK1026PIC16F785PGA2SC1815EAGLEノコギリ波負帰還安定性ナイキスト線図MBEOPA2277P-10フィルタCapSenseAACircuitLMC662文字列固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型電荷密度重積分SIC二相共存磁気モーメント不純物問題PWgui擬ポテンシャルゼーベック係数ZnOウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデルcif2cell入出力陰解法熱拡散方程式HiLAPW両対数グラフCrank-Nicolson法連立一次方程式specx.fifort境界条件片対数グラフグラフの分割円周率ヒストグラム不規則局所モーメントGimpシンボル軸ラベル凡例線種トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ