Scilabで単振り子 その1 解析解との比較

これまで微分方程式による物理現象のモデル化(PDF)から運動学の章で紹介されている微分方程式をScilabを用いて計算してきました。
今回から4回は単振り子の微分方程式をScilabで計算します。

001_20130720182725.png

Fig.1: 単振り子の問題設定



単振り子の微分方程式と解析解


導出は次回に回しますが、単振り子の運動を表す微分方程式は、以下のように書くことが出来ます。

\frac{\mathrm{d}\theta}{\mathrm{d}t} = q
\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} = - \frac{g}{L}\sin\theta

(θ: 振れ角, t: 時間, q: 角速度, g: 重力加速度, L: 糸の長さ)

この微分方程式は、解析的に解を求めることが出来ます。
例えば、初角度θ0から初角速度q0=0で振動を開始したとすると下記のようになります。

t(\theta) = - \sqrt{\frac{L}{2g}}\int^{\theta}_{\theta_0}\frac{\mathrm{d}\theta}{\sqrt{\cos\theta - \cos\theta_0}}

しかしながら、この積分は初等関数で表せる形に出来ないので、結局は数値積分をせざるを得ません。

今回は、これまでと同様にScilabの常微分方程式ソルバodeを用いて振りこの運動をシミュレーションするとともに、解析解に対する数値積分も行い、これら二つを比較します。

プログラミング


常微分方程式ソルバはode関数を使います。(参考:常微分方程式のタグが付いたエントリ)

解析解のほうの数値積分はintegrate関数を用いました。(参考:Scilabで数値積分: 固体の比熱,integrate - 求積法による積分)

// *** 解析解とソルバ解の共通部分 ***
// 初期振幅の入力
g = 9.8; // 重力加速度
l = g / (2 * %pi) ^ 2; // 糸の長さ
// 初期条件
th0 = input("th0 = "); // 初角度
q0 = 0; // 初角速度
X0 = [th0; q0];

// *** 常微分方程式ソルバによる解 ***
// 解くべき微分方程式の定義
function dx = pend(t,x)
dx(1) = x(2);
dx(2) = - g / l * sin(x(1));
endfunction
T = linspace(0,2,200); // 時間ベクトル
TH = ode(X0, 0, T, pend); // 常微分方程式ソルバ
plot(T,TH(1,:),'-r'); // プロット

// *** 解析解 ***
THanaly = linspace(- th0, th0, 20);
Tanaly = - sqrt(l / (2 * g)) * integrate('1 ./ sqrt(cos(th) - cos(th0))','th',th0,THanaly);
plot(Tanaly,THanaly,'og');

// *** グラフの体裁 ***
legend("o.d.e","integration",1);
xlabel("t[s]");
ylabel("$\theta \mathrm{[rad]}$");


計算結果


以下に、初角速度q0=0で初角度θ0を0.1ラジアン、2.9ラジアンの2通りの値で計算した結果を示します。

002_20130720182725.png

003_20130720182724.png

Fig.2-3: 厳密な単振り子の解。sinθ≒θの近似が成り立つときの周期が1秒となるように糸の長さLを調整している。振幅(初角度)が小さいとき(θ0=0.1; グラフ上)は周期が1秒となっているが、振幅(初角度)が大きいとき(θ0=2.9; グラフ下)は周期が1秒を大きく超えている。


関連エントリ




参考URL




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 常微分方程式 ode 数値積分 単振り子 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCOPアンプPICCPA強磁性モンテカルロ解析常微分方程式トランジスタode状態密度インターフェースDOSPDS5022ecaljスイッチング回路定電流半導体シェルスクリプトレベルシフト乱数HP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ