スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。


Scilabで金属の電子比熱

Scilabで金属の化学ポテンシャルでは非線形方程式ソルバfsolveを使って金属の化学ポテンシャルを温度の関数として求めました。これを利用すると電子系の内部エネルギーが温度ごとに計算できます。

今回は、この電子系のエネルギーを温度で数値微分して電子比熱を計算しました。

001_20130616223024.png


電子比熱


電子比熱は、電子系のエネルギーue(T)を温度Tで微分することによって得られます。

c_e(T) = \frac{\mathrm{d}u_e(T)}{\mathrm{d}T}

電子系の内部エネルギーは

u_e(T) = \int_{-\infty}^{\infty}\epsilon f(\epsilon,T) D(\epsilon) \mathrm{d}\epsilon

f(\epsilon,T) = \frac{1}{\exp{\left(\frac{\epsilon - \mu(T)}{k_B - T}\right)}+1}

として表されるため前回数値データとして得られた化学ポテンシャルμ(T)を代入することによって、温度の関数としてue(T)の数値データを得ることが出来ます。

今回は、微分を数値的に行うことによってue(T)からce(T)を求めます。

数値微分


数値的な微分とは、実際には数値差分です。
微分の定義は

f^{'}(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}

なのでΔxが充分小さければ

f^{'}(x) \simeq \frac{f(x+\Delta x)-f(x)}{\Delta x}

と引き算(差分)と割り算で計算できます。

プログラミング


電子比熱の微分を差分に置き換えると

c_e(T) = \frac{u_e (T+\Delta T)-u_e(T)}{\Delta T}

差分はベクトルueの中の隣り合うようその引き算からもとまりますが、これを一気にやってくれるScilab関数がdiffです。
今回のソースコードでは、化学ポテンシャルμ(T)を計算するループの中でついでに内部エネルギーue(T)を計算した後
// 数値計算による電子比熱
dUdT = diff(Uenum) / tstep;
Cenum = [0,dUdT];

として差分を求めています。
差分を求める際に、ベクトルのようその数がひとつ減ってしまうので、先頭にT=0のときの値ce=0を補っています。

作成したソースコードはElectronicSpecificHeat_sce.txtです。

結果と考察


電子比熱の温度依存性のグラフをFig.1に示します。
これまでの計算ではリュードベリ原子単位系を使ってきましたが、実験データと直接比較できるように縦軸がモル比熱となるようにしました。


001_20130616223024.png
Fig.1: 自由電子近似を用いたアルミニウムの電子比熱の温度依存性。青実線はゾンマーフェルト展開、赤破線は数値計算による結果。


前回書いたとおりゾンマーフェルト展開から

c_e(T) = \frac{\pi^2}{3} k_B^2 D(\epsilon_F)T

またScilabで差し込みグラフ:金属の比熱で書いたとおり金属の低温での電子比熱は、電子比熱係数γを用いて

c_e(T) = \gamma T

と書ける事が実験から知られています。

これらを比較すると

\gamma = \frac{\pi^2}{3} k_B^2 D(\epsilon_F)

となります。

実験から求められた電子比熱係数はγ=1.35(mJ/mol/K^2)です。これに対して「自由電子近似+ゾンマーフェルト展開」で求めたものはγ=0.91(mJ/mol/K-2)となり、自由電子近似はアルミニウムに対しておおよそ妥当といったところだと思います。(参考:Lin et al. 2008 Phys. Rev. B)

数値微分に関してなのですが、今回は温度の刻み幅を一定にしてしまったため、本当は低温側で刻み幅が温度そのものと比較して小さくならない様になってしまっています。このことは微分の結果をおかしくしてしまう筈なのですが、そもそもほとんど直線になるような式であったため、その効果が見えていないようです。もっと複雑な式を微分するときには注意しなければなりません。

数値計算とゾンマーフェルト展開の比較は、前回と同様です。
自由電子近似を用いたアルミニウムの電子状態では、融点以上までゾンマーフェルト展開は妥当であるといえそうです。

関連エントリ




参考URL




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 比熱 電子比熱 数値微分 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式トランジスタodeDOSインターフェースPDS5022定電流スイッチング回路分散関係半導体シェルスクリプトレベルシフト乱数HP6632A可変抵抗トランジスタ技術R6452AI2C温度解析ブレッドボードバンドギャップ確率論反強磁性セミナーバンド構造数値積分偏微分方程式非線形方程式ソルバ熱設計絶縁三端子レギュレータISO-I2CA/DコンバータシュミットトリガフォトカプラカオスPWscfGW近似LM358LEDマフィンティン半径発振回路USB数値微分TL431PC817Cサーボアナログスイッチ直流動作点解析補間カレントミラー74HC4053bzqltyチョッパアンプFFT2ちゃんねる開発環境量子力学単振り子電子負荷VESTAQuantumESPRESSO標準ロジックパラメトリック解析ブラべ格子イジング模型アセンブラLDA基本並進ベクトルBSchSMPTLP621失敗談六方最密充填構造コバルト位相図QSGWGGAスイッチト・キャパシタewidth状態方程式VCAキュリー温度繰り返し最適化仮想結晶近似不規則合金熱伝導gfortran相対論抵抗FETMaximaQuantum_ESPRESSOcygwinランダムウォークラプラス方程式スピン軌道相互作用スレーターポーリング曲線マントルシュレディンガー方程式ZnO自動計測QNAP固有値問題ダイヤモンドデータロガー井戸型ポテンシャルTLP552CIFxcrysdenゼーベック係数熱力学条件分岐MCU最小値UPS格子比熱最大値ガイガー管平均場近似過渡解析Writer509スーパーセルFXA-7020ZR差し込みグラフ第一原理計算テスタ起電力OpenMP三角波ubuntuLM555NE555ブラウン運動詰め回路ハーフメタルawkfsolveUbuntuフェルミ面TLP521トランスMAS830LPGACK1026OPA2277フィルタトレーナーバトルEAGLEノコギリ波負帰還安定性ナイキスト線図MBEP-10LMC6622SC1815CapSenseAACircuitPIC16F785入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式ヒストグラム確率論初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分SIC不純物問題擬ポテンシャル状態図cif2cellPWgui二相共存ウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造マテリアルデザインspecx.fフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列ポケモンGO熱拡散方程式HiLAPW両対数グラフ片対数グラフ陰解法Crank-Nicolson法ifort境界条件連立一次方程式グラフの分割軸ラベルヒストグラム不規則局所モーメントスーパーリーグ円周率Gimp凡例線種シンボルトラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。