Scilabで差し込みグラフ:金属の比熱

Scilabで数値積分:固体の比熱では、積分を含む方程式としてあらわされるデバイの比熱式を計算しました。

今回は、アルミニウムの比熱に関して、デバイの比熱式に加えて金属の電子比熱の計算も行い、ほとんどの温度領域においてはデバイの比熱式で表される格子振動の寄与が支配的であり、しかしながら、数ケルビン程度の低温では電子比熱の影響が大きくなることを確認しました。


001_20130606070707.png
Fig.1: アルミニウムの格子比熱・電子比熱の温度依存性のシミュレーション。極めて低温では電子比熱(赤破線)が支配的になるものの、それ以外では格子比熱(青実線)に比べ電子比熱は無視できるほど小さい。



金属の比熱


Scilabで数値積分:固体の比熱では、積分を含む方程式としてあらわされるデバイの比熱式を計算しました。これは、固体の原子の熱振動に起因する熱容量で、格子比熱と呼びます。固体金属の比熱もまた、デバイの比熱式でほとんど問題なく計算できます。

しかしながら、金属の場合は、わずかながら伝導電子に起因する電子比熱も存在します。これは常温では、格子比熱と比較して無視できるほど小さいのですが、数ケルビン程度の極めて低い温度では格子比熱が急速に小さくなるため、電子比熱の寄与が相対的に大きくなります。

今回は、このアルミニウムに関して格子比熱と電子比熱の大きさをScilabで計算し、差し込みグラフ(インセットグラフ)を描画してみます。

プログラミング


格子比熱の計算には、Scilabで数値積分:固体の比熱で計算を行ったデバイモデルを用います。

C_l(T) = 9 R \left( \frac{T}{\Theta_D} \right)^3 \int^{\Theta_D / T}_{0}\frac{x^4 e^x}{(e^x - 1)^2}{\rm d}x

アルミニウムのデバイ温度は428Kとします。(参考:デバイ模型:wikipedia)

電子比熱は、低温では単純に温度に比例することが知られていて、電子比熱係数γを用いて以下のようにあらわします。

C_e(T) = \gamma T

アルミニウムの電子比熱係数は1.35mJ/mol/K^2です。(参考:第4講- 金属の基本物性の電子論-(PDF):志賀@高槻)

// アルミニウムの電子比熱係数(J/mol/K^2)
egamma = 1.35e-3;
// アルミニウムのデバイ温度
dt = 428;
// 気体定数 (J/K/mol)
r = 8.314

// 格子比熱 (Debye model)
function Cl = Cl(T)
Cl = 9 * r * ((T ./ dt) .^ 3) .* integrate('(x .^ 4) .* exp(x) ./ ((exp(x) - 1) .^ 2)','x',0,dt ./ T);
endfunction
// 電子比熱
function Ce = Ce(T)
Ce = egamma .* T;
endfunction

// 高温までのプロット
// 温度ベクトル
T = [1:1:500];
// 格子比熱のプロット
// 絶対零度の計算は出来ないので後から補う
plot([0,T],[0,Cl(T)],'-b');
// 電子比熱のプロット
plot([0,T],[0,Ce(T)],'--r');
legend(['Lattice specific heat';'Electronic specific heat'],2);
xlabel("Temperature (K)");
ylabel("Specific heat (J/K/mol)");

// 低温部分のプロット
xsetech([0.4,0.32,0.5,0.5]);
// 温度ベクトル
T = [1:0.1:10];
// 格子比熱のプロット
// 絶対零度の計算は出来ないので後から補う
plot([0,T],[0,Cl(T)],'-b');
// 電子比熱のプロット
plot([0,T],[0,Ce(T)],'--r');
xlabel("Temperature (K)");
ylabel("Specific heat (J/K/mol)");


格子比熱や電子比熱は、高温までの計算と低温のみの計算の2回の計算を行うため、あらかじめfunctionを用いて関数化してあります。(参考:Scilab入門―電気電子工学で学ぶ数値計算ツール)

差込グラフ(インセットグラフ)は、差し込むほうのグラフを後から小さいサイズで上書きすることで作成することが出来ます。
差し込むグラフの位置とサイズはxsetechで指定することが出来ます。(参考:コマンドxsetech([x座標始点,y座標始点,幅,高さ])を繰り返し使うことで一つのウィンドウに複数のグラフを記述することができます.及びxsetech - プロットのためのグラフィックスウィンドウの サブウィンドウを設定)

また、複数のパネルに分割する場合はsubplotを利用するほうが簡単かもしれません。

// 高温までのプロット
subplot(2,1,1);
// 温度ベクトル
T = [1:1:500];
// 格子比熱のプロット
// 絶対零度の計算は出来ないので後から補う
plot([0,T],[0,Cl(T)],'-b');
// 電子比熱のプロット
plot([0,T],[0,Ce(T)],'--r');
legend(['Lattice specific heat';'Electronic specific heat'],2);
xlabel("Temperature (K)");
ylabel("Specific heat (J/K/mol)");

// 低温部分のプロット
subplot(2,1,2);
// 温度ベクトル
T = [1:0.1:10];
// 格子比熱のプロット
// 絶対零度の計算は出来ないので後から補う
plot([0,T],[0,Cl(T)],'-b');
// 電子比熱のプロット
plot([0,T],[0,Ce(T)],'--r');
xlabel("Temperature (K)");
ylabel("Specific heat (J/K/mol)");


プロット部分を上記のものに差し替えた場合、グラフは以下のようになります。


002_20130606074346.png

Fig.2: subplotで分割した場合


ただし、下のパネルの横軸ラベルが切れてしまうので、きれいな図を描きたい場合は、やはりxsetechのほうがオススメです。

またScilabで関数フィッティング:金属の電気抵抗のように複数のグラフウインドウをひとつのプログラムから立ち上げたい場合は、subplotの代わりにscfでグラフ番号を指定します。

関連エントリ




参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 差し込みグラフ インセットグラフ 比熱 電子比熱 格子比熱 デバイモデル 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPA強磁性PICモンテカルロ解析常微分方程式odeトランジスタecalj状態密度DOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析分散関係I2Cトランジスタ技術R6452A可変抵抗ブレッドボードセミナーバンドギャップ数値積分確率論反強磁性偏微分方程式バンド構造絶縁熱設計非線形方程式ソルバフォトカプラシュミットトリガLEDLM358カオスISO-I2C三端子レギュレータGW近似A/Dコンバータカレントミラーアナログスイッチ数値微分マフィンティン半径TL431発振回路サーボPC817CUSB直流動作点解析74HC4053補間FFTBSch開発環境パラメトリック解析2ちゃんねるチョッパアンプ量子力学bzqlty電子負荷イジング模型LDA標準ロジックアセンブラ基本並進ベクトルブラべ格子単振り子熱伝導位相図TLP621キュリー温度繰り返し状態方程式MaximaVESTAスイッチト・キャパシタ相対論FETランダムウォークスピン軌道相互作用SMP六方最密充填構造抵抗不規則合金ewidthスレーターポーリング曲線GGAラプラス方程式cygwingfortranQSGW失敗談コバルト条件分岐TLP521テスタLM555Writer509TLP552格子比熱マントルデータロガー自動計測詰め回路ガイガー管ダイヤモンドQNAPMCUFXA-7020ZR過渡解析三角波UPSNE555固有値問題熱力学ブラウン運動フェルミ面awk起電力第一原理計算OpenMPfsolveubuntu最大値xcrysden最小値最適化仮想結晶近似VCA差し込みグラフスーパーセル井戸型ポテンシャル平均場近似シュレディンガー方程式FSMフラクタルOPA2277固定スピンモーメント2SC1815全エネルギー合金multiplotgnuplotc/aTeX結晶磁気異方性interp1ウィグナーザイツ胞初期値マンデルブロ集合疎行列面心立方構造fcc不純物問題非線型方程式ソルバフィルタL10構造PGA半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度三次元CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタル正規分布フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt縮退キーボード軸ラベルグラフの分割凡例トラックボールPC不規則局所モーメント片対数グラフトランス両対数グラフCK1026MAS830L直流解析Excel円周率パラメータ・モデルヒストグラム日本語最小二乗法等価回路モデルGimp線種シンボルTS-110TS-112PIC16F785LMC662化学反応文字列specx.f入出力ifortマテリアルデザインヒストグラム確率論Realforce等高線ジバニャン方程式P-10Ubuntuナイキスト線図Crank-Nicolson法陰解法熱拡散方程式HiLAPWAACircuit連立一次方程式負帰還安定性境界条件EAGLEMBE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ