Scilabで数値積分: 固体の比熱

固体の比熱の温度依存性は、物質の種類に関わらず大体似たような形のグラフになることが知られています。この関数は、計算が簡単なアインシュタインモデルと正確だが積分の計算をする必要のあるデバイモデルの2種類が知られています。Scilabを利用すると簡単に数値積分をすることが出来ます。

今回のエントリでは、銅を対象にアインシュタインモデル、デバイモデルの両方から比熱を計算します。

001_20130522024102.png
Fig.1: 銅の比熱の温度依存性。青破線がアインシュタインモデル、赤実線がデバイモデルによる計算。



固体の比熱


デュロン=プティの法則によると充分高温の固体の単位モルあたりの比熱は、物質の種類によらずほとんど一定で3R(R = 8.314 J/K/mol :気体定数)です。また絶対零度での比熱はゼロになることも知られています。更に、中間的な温度での温度依存性も適切な温度で規格化をすれば同じ関数の形で表すことが出来ることが知られています。

この関数には、アインシュタインモデルとデバイモデルの2種類が知られています。これら二つのモデルは、どちらも高温でデュロン=プティの法則を再現し、絶対零度でゼロになりますが、中間温度での計算結果が微妙に異なります。デバイモデルのほうがより実験値に近い結果を示すことが知られていますが、数式中に積分を含むため計算が多少困難です。

今回はScilabで数値積分をするサンプルとして、デバイモデルから銅の比熱の温度依存性を計算します。

物質の個性を表す「適切な規格化温度」は、デバイモデルではデバイ温度(ΘD)、アインシュタインモデルではアインシュタイン温度(ΘE)と呼ばれます。銅のデバイ温度は343.5Kで、デバイ温度とアインシュタイン温度は、以下の式で換算できます。(参考:デバイ模型)

\Theta_E = \Theta_D \sqrt[3]{\frac{\pi}{6}}

この関係を使うとアインシュタインモデルとデバイモデルを用いてそれぞれ計算した比熱の温度依存性を比較することが出来ます。

アインシュタインモデルの計算


まずは、積分の必要の無いアインシュタインモデルの計算プログラムを書きます。以下の式に従って、500Kまでの銅の比熱の温度依存性を計算しました。

C_E (T) = 3 R \left(\frac{\Theta_E}{T}\right)^2 \frac{e^{\Theta_E / T}}{(e^{\Theta_E / T}-1)^2}

//Debye temperature (K)
dt = 343.5;
// Einstein temperature (K)
et = dt * (%pi / 6) ^ (1 / 3);
// gas constant (J/K/mol)
r = 8.314

// Temperature
T = [1:1:500];

// Einstein model
Ce = 3 * r * ((et ./ T) .^ 2) .* exp(et ./ T) ./ ((exp(et ./ T) - 1) .^ 2);

plot(T,Ce,'--b');
xlabel("Temperature (K)");
ylabel("Specific heat (J/K/mol)");


デバイモデルの計算


次に、数値積分を用いたデバイモデルの計算プログラムです。アインシュタインモデルのときと同様に500Kまでの比熱の計算をしました。

C_D (T) = 9 R \left(\frac{T}{\Theta_D}\right)^3 \int_0^{\Theta_D / T}\frac{x^4 e^x}{(e^x -1)^2}{\rm d}x

Scilabでの数値積分にはintegrateを利用します。(参考:求積法による積分)

//Debye temperature (K)
dt = 343.5;
// Einstein temperature (K)
et = dt * (%pi / 6) ^ (1 / 3);
// gas constant (J/K/mol)
r = 8.314

// Temperature
T = [1:1:500];

// Debye model
Cd = 9 * r * ((T ./ dt) .^ 3) .* integrate('(x .^ 4) .* exp(x) ./ ((exp(x) - 1) .^ 2)','x',0,dt ./ T);
plot(T,Cd,'-r');
xlabel("Temperature (K)");
ylabel("Specific heat (J/K/mol)");


まとめ


最後に以上の計算をまとめてひとつのグラフ上にプロットします。ついでにグラフの凡例も付けました。(参考:グラフの凡例を描画する)

// Debye temperature (K)
dt = 343.5;
// Einstein temperature (K)
et = dt * (%pi / 6) ^ (1 / 3);
// gas constant (J/K/mol)
r = 8.314

// Temperature
T = [1:1:500];

// Einstein model
Ce = 3 * r * ((et ./ T) .^ 2) .* exp(et ./ T) ./ ((exp(et ./ T) - 1) .^ 2);
// Debye model
Cd = 9 * r * ((T ./ dt) .^ 3) .* integrate('(x .^ 4) .* exp(x) ./ ((exp(x) - 1) .^ 2)','x',0,dt ./ T);

plot(T,Ce,'--b');
plot(T,Cd,'-r');
legend(['Einstein model';'Debye model'],2);
xlabel("Temperature (K)");
ylabel("Specific heat (J/K/mol)");


デバイモデルとアインシュタインモデルを比較すると、高温でデュロン=プティの値になり、絶対零度でゼロになる点が一致します。しかし、中間的な温度ではデバイモデルのほうが高い比熱を示す事がグラフから読み取れます。

参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 数値積分 格子比熱 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度常微分方程式モンテカルロ解析トランジスタodeDOSインターフェーススイッチング回路定電流PDS5022分散関係半導体シェルスクリプト乱数レベルシフトHP6632A温度解析ブレッドボード可変抵抗I2Cトランジスタ技術R6452A確率論バンド構造セミナーバンドギャップ反強磁性数値積分熱設計絶縁非線形方程式ソルバ偏微分方程式PWscfA/Dコンバータマフィンティン半径フォトカプラカオスISO-I2CGW近似LM358LEDシュミットトリガ三端子レギュレータ74HC4053アナログスイッチUSBサーボ数値微分直流動作点解析補間カレントミラーTL431PC817C発振回路FFT電子負荷VESTA開発環境量子力学単振り子bzqlty基本並進ベクトル2ちゃんねるチョッパアンプ標準ロジックパラメトリック解析アセンブラブラべ格子BSchQuantumESPRESSOイジング模型LDA状態方程式GGA仮想結晶近似VCA熱伝導SMPスイッチト・キャパシタキュリー温度Quantum_ESPRESSOスーパーリーグTLP621トレーナーバトルewidth最適化Maxima抵抗失敗談相対論コバルト繰り返し位相図六方最密充填構造ポケモンGOスピン軌道相互作用gfortranランダムウォークFETスレーターポーリング曲線cygwinQSGW不規則合金ラプラス方程式MCU条件分岐データロガーマントルUPS固有値問題格子比熱シュレディンガー方程式熱力学詰め回路ガイガー管QNAP井戸型ポテンシャルダイヤモンドOpenMPTLP521ハーフメタルLM555ubuntu平均場近似ブラウン運動フェルミ面NE555ZnOゼーベック係数TLP552xcrysdenCIF最小値最大値awkfsolveテスタ第一原理計算Ubuntu差し込みグラフFXA-7020ZR三角波過渡解析Writer509自動計測スーパーセル起電力トランスCK1026MAS830LフィルタPGAP-10MBEOPA2277ナイキスト線図ノコギリ波AACircuitEAGLE2SC1815PIC16F785LMC662CapSense負帰還安定性入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分SIC不純物問題擬ポテンシャル状態図cif2cellPWgui二相共存ウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造ヒストグラム確率論マテリアルデザインフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列不規則局所モーメント陰解法熱拡散方程式HiLAPWCrank-Nicolson法連立一次方程式specx.fifort境界条件両対数グラフ片対数グラフGimp円周率ヒストグラムシンボル線種グラフの分割軸ラベル凡例トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ