Scilabで数値積分: 固体の比熱

固体の比熱の温度依存性は、物質の種類に関わらず大体似たような形のグラフになることが知られています。この関数は、計算が簡単なアインシュタインモデルと正確だが積分の計算をする必要のあるデバイモデルの2種類が知られています。Scilabを利用すると簡単に数値積分をすることが出来ます。

今回のエントリでは、銅を対象にアインシュタインモデル、デバイモデルの両方から比熱を計算します。

001_20130522024102.png
Fig.1: 銅の比熱の温度依存性。青破線がアインシュタインモデル、赤実線がデバイモデルによる計算。



固体の比熱


デュロン=プティの法則によると充分高温の固体の単位モルあたりの比熱は、物質の種類によらずほとんど一定で3R(R = 8.314 J/K/mol :気体定数)です。また絶対零度での比熱はゼロになることも知られています。更に、中間的な温度での温度依存性も適切な温度で規格化をすれば同じ関数の形で表すことが出来ることが知られています。

この関数には、アインシュタインモデルとデバイモデルの2種類が知られています。これら二つのモデルは、どちらも高温でデュロン=プティの法則を再現し、絶対零度でゼロになりますが、中間温度での計算結果が微妙に異なります。デバイモデルのほうがより実験値に近い結果を示すことが知られていますが、数式中に積分を含むため計算が多少困難です。

今回はScilabで数値積分をするサンプルとして、デバイモデルから銅の比熱の温度依存性を計算します。

物質の個性を表す「適切な規格化温度」は、デバイモデルではデバイ温度(ΘD)、アインシュタインモデルではアインシュタイン温度(ΘE)と呼ばれます。銅のデバイ温度は343.5Kで、デバイ温度とアインシュタイン温度は、以下の式で換算できます。(参考:デバイ模型)

\Theta_E = \Theta_D \sqrt[3]{\frac{\pi}{6}}

この関係を使うとアインシュタインモデルとデバイモデルを用いてそれぞれ計算した比熱の温度依存性を比較することが出来ます。

アインシュタインモデルの計算


まずは、積分の必要の無いアインシュタインモデルの計算プログラムを書きます。以下の式に従って、500Kまでの銅の比熱の温度依存性を計算しました。

C_E (T) = 3 R \left(\frac{\Theta_E}{T}\right)^2 \frac{e^{\Theta_E / T}}{(e^{\Theta_E / T}-1)^2}

//Debye temperature (K)
dt = 343.5;
// Einstein temperature (K)
et = dt * (%pi / 6) ^ (1 / 3);
// gas constant (J/K/mol)
r = 8.314

// Temperature
T = [1:1:500];

// Einstein model
Ce = 3 * r * ((et ./ T) .^ 2) .* exp(et ./ T) ./ ((exp(et ./ T) - 1) .^ 2);

plot(T,Ce,'--b');
xlabel("Temperature (K)");
ylabel("Specific heat (J/K/mol)");


デバイモデルの計算


次に、数値積分を用いたデバイモデルの計算プログラムです。アインシュタインモデルのときと同様に500Kまでの比熱の計算をしました。

C_D (T) = 9 R \left(\frac{T}{\Theta_D}\right)^3 \int_0^{\Theta_D / T}\frac{x^4 e^x}{(e^x -1)^2}{\rm d}x

Scilabでの数値積分にはintegrateを利用します。(参考:求積法による積分)

//Debye temperature (K)
dt = 343.5;
// Einstein temperature (K)
et = dt * (%pi / 6) ^ (1 / 3);
// gas constant (J/K/mol)
r = 8.314

// Temperature
T = [1:1:500];

// Debye model
Cd = 9 * r * ((T ./ dt) .^ 3) .* integrate('(x .^ 4) .* exp(x) ./ ((exp(x) - 1) .^ 2)','x',0,dt ./ T);
plot(T,Cd,'-r');
xlabel("Temperature (K)");
ylabel("Specific heat (J/K/mol)");


まとめ


最後に以上の計算をまとめてひとつのグラフ上にプロットします。ついでにグラフの凡例も付けました。(参考:グラフの凡例を描画する)

// Debye temperature (K)
dt = 343.5;
// Einstein temperature (K)
et = dt * (%pi / 6) ^ (1 / 3);
// gas constant (J/K/mol)
r = 8.314

// Temperature
T = [1:1:500];

// Einstein model
Ce = 3 * r * ((et ./ T) .^ 2) .* exp(et ./ T) ./ ((exp(et ./ T) - 1) .^ 2);
// Debye model
Cd = 9 * r * ((T ./ dt) .^ 3) .* integrate('(x .^ 4) .* exp(x) ./ ((exp(x) - 1) .^ 2)','x',0,dt ./ T);

plot(T,Ce,'--b');
plot(T,Cd,'-r');
legend(['Einstein model';'Debye model'],2);
xlabel("Temperature (K)");
ylabel("Specific heat (J/K/mol)");


デバイモデルとアインシュタインモデルを比較すると、高温でデュロン=プティの値になり、絶対零度でゼロになる点が一致します。しかし、中間的な温度ではデバイモデルのほうが高い比熱を示す事がグラフから読み取れます。

参考URL




付録


このエントリで使用したScilabのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 数値積分 格子比熱 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性PICCPAOPアンプecalj常微分方程式状態密度モンテカルロ解析トランジスタodeDOSインターフェース定電流PDS5022スイッチング回路半導体シェルスクリプト分散関係レベルシフト乱数HP6632AR6452Aトランジスタ技術温度解析I2C可変抵抗ブレッドボード反強磁性バンドギャップセミナー数値積分確率論バンド構造熱設計絶縁偏微分方程式非線形方程式ソルバISO-I2CA/DコンバータフォトカプラGW近似LM358カオス三端子レギュレータシュミットトリガマフィンティン半径LEDサーボ発振回路アナログスイッチTL431カレントミラー直流動作点解析USB74HC4053PC817C数値微分量子力学単振り子bzqlty電子負荷アセンブラ開発環境補間チョッパアンプBSchLDAイジング模型パラメトリック解析2ちゃんねるブラべ格子標準ロジックFFT基本並進ベクトルスイッチト・キャパシタラプラス方程式SMP熱伝導失敗談状態方程式キュリー温度抵抗相対論スレーターポーリング曲線不規則合金コバルト六方最密充填構造スピン軌道相互作用QSGWMaximaewidthGGAVCA仮想結晶近似TLP621繰り返しVESTA位相図ランダムウォークFETgfortrancygwinQNAP自動計測データロガーダイヤモンドマントルガイガー管熱力学シュレディンガー方程式詰め回路固有値問題条件分岐井戸型ポテンシャル格子比熱MCUUPSUbuntuTLP521LM555ハーフメタルubuntufsolveブラウン運動平均場近似NE555最適化TLP552Quantum_ESPRESSOPWscfxcrysdenCIF最小値最大値awkフェルミ面Writer509スーパーセルOpenMPテスタ差し込みグラフ起電力三角波第一原理計算過渡解析FXA-7020ZRPIC16F785CK1026P-10LMC662トランスMAS830L負帰還安定性PGAOPA2277MBE2SC1815AACircuitEAGLEフィルタナイキスト線図ノコギリ波CapSense疎行列FSMTeX結晶磁気異方性非線型方程式ソルバ固定スピンモーメント全エネルギーmultiplotgnuplotc/aL10構造fcc等高線ジバニャン方程式ヒストグラム確率論正規分布初期値面心立方構造ウィグナーザイツ胞interp1合金半金属SIC二相共存ZnO重積分電荷密度ゼーベック係数不純物問題磁気モーメントウルツ鉱構造BaOquantumESPRESSOフォノンデバイ模型edeltリジッドバンド模型岩塩構造ルチル構造スワップ領域マテリアルデザインspecx.fフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元擬ポテンシャル縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列入出力熱拡散方程式HiLAPW両対数グラフ陰解法Crank-Nicolson法ifort境界条件連立一次方程式片対数グラフグラフの分割円周率ヒストグラム不規則局所モーメントGimpシンボル軸ラベル凡例線種トラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ