Scilabで繰り返し計算: ロジスティック写像

Scilabを使えば、非常に簡単に数値計算のプログラムを書くことができます。例えば、たった8行のプログラムでFig.1のような計算が出来てしまいます。

今回は、プログラミングの基本のひとつであるループ処理の例としてロジスティック写像の計算を行いました。Scilabはインタープリタなので、ループ処理は苦手です。そのため出来る限りループを無くすようにする実例にもなっています。

001_20130520003209.png
Fig.1: ロジスティック写像。横軸が繁殖率a、縦軸が100世代目から200世代目までの個体数X(n)。



ロジスティック写像


生物の個体数Xが世代nに従ってどのように変化するかという研究からロジスティック方程式というものが知られています。

X(n+1) = a \times X(n) \times (1-X(n))

この式の見た目はとても簡単であるにもかかわらず、個体数の初期値X(1)や繁殖率aに対して、充分時間がたったときの個体数(例えば100世代目の個体数X(100)など)が非常に敏感に反応するため、カオス理論と関連して議論される面白い方程式となっています。(参考:ロジスティック写像:長崎県立大学伊藤研究室)

002_20130520024958.png
Fig.2: 繁殖率aに関して 3 < a < 4 の部分を拡大したもの


また、数値計算の例題としてもシンプルな繰り返しのコードで思いもよらないほど複雑な、かっこいい結果が得られるので良く見かけます。Fig.1,2はロジスティック方程式を繁殖率aを0<a<4の間で計算したもので、縦軸に個体数X(n)を100 < n < 200の範囲でプロットしてあります。個体数の初期値はX(1)=0.2としました。
本エントリではScilabを用いたループ計算の例としてこのロジスティック写像のプログラムを紹介します。特にScilabのようなインタプリタではループ処理と非ループ処理で計算速度に大きな差が出るため、この点についても書きます。

繰り返し計算


まずは、簡単のために繁殖率をa=3.5に固定して、世代数nを順次変化させるプログラムを書きます。
Scilabで繰り返し処理をするにはforを使います。(参考:繰り返し:Scilab簡易リファレンス-PukiWiki)

nmax = 50;

a = 3.5;
x = 0.2 * ones(nmax,1);

for n = 1: nmax - 1 do
x(n+1) = a * x(n) * (1.0 - x(n));
end

plot(x,'o-r');
xlabel("n");
ylabel("X(n)");

plot([0,0],[0,1]);


最後の行の(0,0)と(0,1)のプロットは描画領域を調整するためのダミーです。


003_20130521000718.png
Fig.3: a=3.5 X(1)=0.2のときの個体数X(n)の世代発展


Fig.3を見ると30世代ぐらいまでは過渡領域で、それ以降は4つの値を行き来していることが分かります。
Fig.1-2は充分時間がったったときの個体数で、a=3.5において4つの値を行き来する事は四本の線に分かれている事から読み取れます。

繰り返し計算の入れ子


それでは次にFig.1-2を描くプログラムについて考えます。
先ほどは世代数nを変更するために繰り返し命令forを使いました。このことを応用してforを入れ子にすれば、さらに繁殖率aを変更した繰り返し計算のプログラムがかけます。

nmax = 200;
nout = 100;

A = [0:0.001:4];
X = 0.2 * ones(nmax,length(A));

for m = 1:length(A) do
for n = 1: nmax - 1 do
X(n+1,m) = A(m) * X(n,m) * (1.0 - X(n,m));
end
end

plot(A,X(nout:nmax,:),'.r','markersize',1);

このプログラムは悪くないのですが、ベストではないです。

繰り返し計算は出来れば避ける


ループ計算は遅いので,できるだけ使わないでは、同じ内容の計算であってもForループの有無により数10倍計算速度が変わる例が示されています。

ループを使わずに済ませることができるかどうかはケース・バイ・ケースなのですが、今回は入れ子にせずとも1段階のループで処理することが出来ます。
今回のロジスティック写像のプログラムは、私の環境では数10倍どころか、ループ部分の計算時間が約14秒から約0.03秒まで短縮できました。(もっとも、そのあとのグラフの描画に数秒程度かかってしまうのですが。)

nmax = 200;
nout = 100;

A = [0:0.001:4];
X = 0.2 * ones(nmax,length(A));

for n = 1: nmax - 1 do
X(n+1,:) = A .* X(n,:) .* (1.0 - X(n,:));
end

plot(A,X(nout:nmax,:),'.r','markersize',1);


ただし、Scilabは細かいことを気にせずにプログラムが書けることが最大の利点なので、計算速度向上のために腐心して時間を無駄遣いするぐらいなら、多少効率が落ちようともさっさとコードを書いてしまうほうがいいという面もあります。

関連エントリ




参考URL




付録


このエントリで使用したScilab用のソースコードを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: Scilab 繰り返し カオス 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ