AkaiKKRで鉄の安定相と格子定数

AkaiKKRでダイヤモンド型構造半導体AkaiKKRでニッケル・鉄・コバルトでは、色々な結晶構造を持つ固体の電子構造の計算を行いましたが、その格子定数はあらかじめ分かっているものとして入力ファイルを作成しました。

今回は、全エネルギー最小化という条件から、結晶構造や格子定数を第一原理的に決定することを目的にα, γ, δ-Feの計算をAkaiKKRで行い、計算結果をMurnaghanの状態方程式へフィッティングしました。

その結果α-Feが最も安定で、その格子定数は a=2.81(Å) となる事がわかりました。これは、実測値である a=2.87 (Å) と極めて近い値です。


第一原理計算と格子定数


『第一原理計算とは』といった説明は、調べてみると色々な方が説明されていますが、私にとって直感的に分かりやすかったのは第一原理計算 (基礎編)の下記のものです。

第一原理(英語はfirst-principlesまたはab initio(英語ではない))とは、なんら実験データや経験パラメーターを使わないで理論計算をする方法の総称。でも、この業界では電子状態計算、平たく言うとシュレディンガー方程式を解く計算のことを暗に指すことが多い。


第一原理計算というために大切なことは、実験データを見てパラメータをいじるということをしていないということです。

とは言うものの実際に第一原理計算パッケージを使うときには、これまでAkaiKKRを使ったエントリにも当てはまることですが、結晶構造やその格子定数は計算の前に入力する必要があります。

例えば鉄の場合について考えます。

鉄は常温では体心立方(body-centered cubic; bcc)構造となり(フェライト; α-Fe)強磁性を持ちます。温度を上げていくと911℃で面心立方(face-centered cubic; fcc)構造に相転移します(オーステナイト; γ-Fe)。さらに温度を上げていくと1392℃で再びbcc構造へ戻りますが(デルタフェライト; δ-Fe)、このときは既にキュリー温度を超えているため常磁性です。

AkaiKKRの入力ファイルを作成するとき、常温(というよりは絶対零度)でα, γ, δのどの鉄が安定なのか、また、その格子定数がいくつなのかは実験データを見ないと分からないことになります。

第一原理計算が実験データを使わないとは言っても、入力する結晶構造と格子定数だけは多くの場合大目に見てくれるというのが暗黙の了解の様ですが、厳しい見方をするなら第一原理でないということも出来ます。

この問題は、いろいろな結晶構造でいろいろな格子定数を使って計算をした後、全エネルギーを比較することによって解決することが出来ます。
実例として、アドバンスソフト社が発売しているAdvance/PHASEで行われた計算例が公開されています。

basis_spin_01.png
Fig.1: Advance/PHASEによるFeの全エネルギーと体積の関係


今回のエントリではこの計算をAkaiKKRで行います。

specx.fの設定


今回の計算では、specx.fを下記の設定にしてmakeしました。
     & (natmmx=4, ncmpmx=4, msizmx=198, mxlmx=3, nk1x=2200, nk3x=2688,
& msex=201, ngmx=15, nrpmx=650, ngpmx=650, npmx=350, msr=400)


入力ファイル


磁性を考慮した(magtyp=mag)bcc鉄(alpha_in.txt)、及び考慮しない(magtyp=nmag)bcc鉄(delta_in.txt)とfcc鉄(gamma_in.txt)の3つの入力ファイルを用意し、それぞれ1原子あたりの体積が8-15(Å3)となるようにしました。

Murnaghanの状態方程式へのフィッティング


計算結果の体積とエネルギーの対応関係(Energy_dat.txt)から、最もエネルギーが低いときの体積を求めるため、gnuplotを用いてMurnaghanの状態方程式へ最小二乗法フィッティングを行います。

Murnaghanの状態方程式は下記の式で表されます。

E_{tot}(V) = \frac{BV}{B^{'}(B^{'}-1)}\left[B^{'}\left(1-\frac{V_0}{V}\right)+\left(\frac{V_0}{V}\right)^{B^{'}}-1\right]+E_0

ここでEtotが全エネルギー、Bが体積弾性率、B'が体積弾性率の圧力微分、Vが体積です。
フィッティングとグラフの描画を行うgnuplotのスクリプトはEnergy_plt.txtです。

結果


結果をFig.2に示します。Advance/PHASEで行われた計算結果と比較すると(定量的なものはともかく)強磁性bcc構造のα-Feが1原子辺りの体積が11(Å3)のあたりで最もエネルギーが低く安定であることが再現できています。


001_20130309181913.png
Fig.2: AkaiKKRによるFeの全エネルギーと体積の関係


実際に測定された鉄の格子定数、Advance/PHASEによる計算結果と今回AkaiKKRで計算したものをTable.1にまとめました。

実測PHASEAkaiKKR
a (Å)2.872.8452.81
B (GPa)168177.237190
table.1: 強磁性bcc鉄の格子定数と体積弾性率


実測とAdvance/PHASEの値は第一原理シミュレータ入門 PHASE&CIAOから引用しました。

ひょっとしたらたまたまなのかも知れませんが、格子定数に関しては非常によく一致しています。

Appendix: β-Fe?


今回のエントリでは「強磁性bcc鉄=α-Fe」「常磁性bcc鉄=δ-Fe」という様な書き方をしてしまいましたが、これは厳密には間違いです。鉄のキュリー温度は770℃なので、常温付近では常磁性だったbcc鉄はfcc(γ-Fe)へ相転移する911℃よりも低温で常磁性になります。
この770-911℃の間で安定な常磁性bcc鉄のことを以前はβ-Feと呼んでいたようですが、現在ではα-Feの一部として扱われています。

強磁性bcc鉄(α-Fe)
 |
 | 770℃
 ↓
常磁性bcc鉄(これもα-Fe,以前はβ-Feと呼ばれていた。)
 |
 | 911℃
 ↓
fcc鉄(γ-Fe)
 |
 | 1392℃
 ↓
常磁性bcc鉄(δ-Fe)

AkaiKKRでは絶対零度の計算しか出来ないため『もしも絶対零度のとき常磁性bcc構造が安定だったとしたらどうなるか』という計算を(本来高温の相である)δ-Feと呼ぶのはおかしいのですが、表記をややこしくしないためこう書きました。

なお、第一原理シミュレータ入門 PHASE&CIAOの表3.4にはα,β,γと書いてありますが、これは単なるα,γ,δの誤植だと思われます。

関連エントリ




参考URL




付録


このエントリで使用したAkaiKKR用入力ファイルなどを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。(参考:ねがてぃぶろぐの付録)


参考文献/使用機器





フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: AkaiKKR machikaneyama KKR 安定相 状態方程式 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCOPアンプPICCPA強磁性モンテカルロ解析常微分方程式トランジスタode状態密度インターフェースDOSPDS5022ecaljスイッチング回路定電流半導体シェルスクリプトレベルシフト乱数HP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ