反転DCDCを昇降圧DCDCのように使う

1.5Vの乾電池を直列にしてつかう場合、電池の本数と電源電圧によっては、使用中にバッテリー電圧が電源電圧をまたぐような設計になる場合があります。
しかしながら、昇降圧電源は回路が複雑で面倒です。

そういった場合は、反転型のスイッチングレギュレータを使うとシンプルな電源回路になることがあります。

002_20110501044330.png


電池の数と出力電圧


バッテリ動作のマイコン電源に関するメモでは『理想的には』回路動作に必要なエネルギーから必要なバッテリーの本数が決まるが、『現実的には』他の要因にも影響を受けると書きました。

今回のエントリでは、電池の本数と出力電圧にかかわる問題について考えます。

一般的なアルカリ乾電池の公称電圧は1.5Vと言う事になっていますが、実際の初期電圧は1.6V程度あります。また(もはや入手できませんが)オキシライド乾電池は1.7Vもの初期電圧を持っており、これを使った懐中電灯の電球が切れてしまうというような問題もありました。

逆に、エネループなどのニッケル水素電池の公称電圧は1.2Vと低いですし、普通のアルカリ電池であっても消耗と共に端子電圧が下がってります。多くの乾電池で、終止電圧を1V程度と見積もるのが妥当なようです。


001_20110501044321.png

fig.1: エネループの放電量と端子電圧の関係


従って、バッテリ動作する回路の電源を設計する場合、電池1本あたりの電圧は1V程度から1.6V(あるいは1.7V)程度まで変化しても、電源電圧が変動しないようにする必要があります。
これが、複数本の直列となるとかなりの電圧差となります。


直列数終止電圧(V)アルカリ初期電圧(V)オキシ初期電圧(V)
11.01.61.7
22.03.23.4
33.04.85.1
4 4.06.46.8
5 5.088.5
table.1: 電池の直列数と初期・終止電圧


具体例として、4本の乾電池から5Vを作ることを考えます。
この場合、初期電圧付近では目標とする電圧よりも高い入力電圧を持ち、終止電圧近くでは出力電圧よりも入力電圧が低くなることになります。

反転型DCDCコンバータで正電源


入力電圧より高い出力電圧を得るためには、昇圧型のスイッチングレギュレータが必要になります。
逆に、入力電圧より低い出力電圧を得るにはこう圧型のスイッチングレギュレータや三端子レギュレータなどのリニアレギュレータを利用します。

では、入力電圧が出力電圧よりも高いときと低いのと気の両方で出力電圧を安定させるにはどのようにすればよいでしょうか?

常識的に考えれば、昇降圧型のスイッチングレギュレータを使うという回答になると思います。昇降圧コンバータの回路形式は、SEPICやZetaと呼ばれるものがあるらしいのですが、少し難しそうです。

また、まず昇圧をしてから、降圧をするという手段もありますが、これは実質的にDCDCコンバータをふたつ用意するということなので、手間がかかります。

そこで、今回は負電源三端子レギュレータを正電源用にするとドロップ分が負電源になると似たような発想の転換から、反転型スイッチングレギュレータの負電圧出力を正電源として使うことを考えて見ます。


002_20110501044330.png
fig.2: 負電源を正電源と考える


上に示したfig.2がこの考え方の全てです。
バッテリーのマイナス電極をGNDと考えると反転コンバータの出力が-5Vとなりますが、反転コンバータの出力を0Vと考えれば、バッテリーのマイナス極が+5Vという事になります。

もちろんこの方法には問題がある場合もあるでしょう。

  • 同じバッテリーからOPアンプ用の±12Vをつくりたい
  • 入力電圧は他の危機から供給されている


等の原因で、電池のマイナス側をGND電位としなければならないときには使えません。
しかし、そういった適用の限界を理解していれば応用範囲はたくさんあるのでは無いかと思います。

制御ICの入手性とSPICEモデル


秋葉原でのスイッチングレギュレータ制御ICの入手には、鈴商が安くて種類も豊富なようです。また、千石電商もそこそこの品揃えがあるようですし、値段を気にしなければマルツもありでしょう。

今回の例ではNJM2360が便利です。
NJM2360はオンセミコンダクタのMC34063のセカンドソースで、入手性もよいため、少なくともどちらかは秋葉原で購入できると思います。
また、100円ショップの315円携帯充電器を分解すると中に入っていることがあるようです。

NJM2360には、他にもメリットがあります。

一つ目は、新日本無線が出しているICなので日本語のデータシートがダウンロードできるという点です。

また、オンセミコンダクタがmc34063.libを公開しているのでSPICEシミュレーションを行うことが出来ます。

神木一也さんのLTspice メモのMC34063の項目にあるシンボルファイルとあわせてLTspiecでも使うことが出来ます。


003_20110501044321.png
004_20110501044321.png

fig.3-4: NJM2360(MC34063)のシミュレーション


関連エントリ




参考URL




付録


このエントリで使用したBSch3V形式の回路図ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: LTspice スイッチング回路 

comment

Secret

管理人のみ閲覧できます

このコメントは管理人のみ閲覧できます
FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPA強磁性PICモンテカルロ解析常微分方程式odeトランジスタecalj状態密度DOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析分散関係I2Cトランジスタ技術R6452A可変抵抗ブレッドボードセミナーバンドギャップ数値積分確率論反強磁性偏微分方程式バンド構造絶縁熱設計非線形方程式ソルバフォトカプラシュミットトリガLEDLM358カオスISO-I2C三端子レギュレータGW近似A/Dコンバータカレントミラーアナログスイッチ数値微分マフィンティン半径TL431発振回路サーボPC817CUSB直流動作点解析74HC4053補間FFTBSch開発環境パラメトリック解析2ちゃんねるチョッパアンプ量子力学bzqlty電子負荷イジング模型LDA標準ロジックアセンブラ基本並進ベクトルブラべ格子単振り子熱伝導位相図TLP621キュリー温度繰り返し状態方程式MaximaVESTAスイッチト・キャパシタ相対論FETランダムウォークスピン軌道相互作用SMP六方最密充填構造抵抗不規則合金ewidthスレーターポーリング曲線GGAラプラス方程式cygwingfortranQSGW失敗談コバルト条件分岐TLP521テスタLM555Writer509TLP552格子比熱マントルデータロガー自動計測詰め回路ガイガー管ダイヤモンドQNAPMCUFXA-7020ZR過渡解析三角波UPSNE555固有値問題熱力学ブラウン運動フェルミ面awk起電力第一原理計算OpenMPfsolveubuntu最大値xcrysden最小値最適化仮想結晶近似VCA差し込みグラフスーパーセル井戸型ポテンシャル平均場近似シュレディンガー方程式FSMフラクタルOPA2277固定スピンモーメント2SC1815全エネルギー合金multiplotgnuplotc/aTeX結晶磁気異方性interp1ウィグナーザイツ胞初期値マンデルブロ集合疎行列面心立方構造fcc不純物問題非線型方程式ソルバフィルタL10構造PGA半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度三次元CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタル正規分布フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt縮退キーボード軸ラベルグラフの分割凡例トラックボールPC不規則局所モーメント片対数グラフトランス両対数グラフCK1026MAS830L直流解析Excel円周率パラメータ・モデルヒストグラム日本語最小二乗法等価回路モデルGimp線種シンボルTS-110TS-112PIC16F785LMC662化学反応文字列specx.f入出力ifortマテリアルデザインヒストグラム確率論Realforce等高線ジバニャン方程式P-10Ubuntuナイキスト線図Crank-Nicolson法陰解法熱拡散方程式HiLAPWAACircuit連立一次方程式負帰還安定性境界条件EAGLEMBE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ