スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。


LMC662で試作チョッパアンプ

汎用OPアンプをチョッピングで高精度化の方法を用いて、実測で約440μVの入力オフセット電圧を持つLMC662を低オフセット化する実験を行いました。このチョッパアンプのオフセット電圧の測定をしたところ、約55μVとなり、実際にオフセット電圧が小さくなっていることが確認できました。

004_20110328022019.png 005_20110328022019.png



LTspiceでのシミュレーション


汎用OPアンプをチョッピングで高精度化では、PICなどのマイコンと組み合わせることによって(オフセットの小さくない)汎用OPアンプを利用して、微小電圧の高精度測定を行うシミュレーションを行いました。


003_20110306112150.png
fig.1: マイコン利用チョッパアンプのスケマティック

005_20110306134701.png
fig.2: 入力電圧-出力電圧特性。横軸が入力電圧で、縦軸が出力電圧。赤で示したラインがチョッパ増幅器の出力電圧を表していて、緑が理想的な出力電圧をあらわしています。


その結果、5mVの入力オフセット電圧を持つOPアンプでも0-25mV程度の微小電圧を測定することができることがわかりました。
そこで今回は、現実のOPアンプでもシミュレーション通り低オフセット化が実現できるのかを確認するために、単電源OPアンプLMC662を対象に実験を行いました。

回路構成


利用した回路の概念図をfig.3に、もう少し詳細な回路図をfig.4に示します。


003_20110328022007.png
fig.3:測定回路の概念図

004_20110328022019.png
fig.4:ChopAMPの詳細な回路図


制御用のPICマイコンは8ピンのPIC12F683を利用しました。
基準電圧源には、鈴商で購入したLM4040で作成した4.096Vを利用しました。
A/D変換後のデータは、シリアル通信で(別のPICに接続した)キャラクタLCDに表示しました。
被測定用の微小電圧は、5mΩの抵抗(ミリオーム抵抗 前編)に0-5Aの電流を流すことによって生成しました。電源はHP6632Aシステム電源、電流とシャント電圧の測定はR6452Aデジタルマルチメータを利用しました。

測定結果


測定結果をfig.5に示します。


005_20110328022019.png
fig.5: マイコン利用自作チョッパアンプの測定結果


緑の十字シンボルが実測値で、赤のラインは測定値を線形フィッティングしたものです。

Vout = a * Vin + b
(Vout: 出力電圧, Vin:入力(シャント)電圧, a:ゲイン, b:出力オフセット電圧)

フィッティングの結果から a=102.129, b=0.0055435 という値が得られました。
従って、入力換算オフセット電圧が約55μVと求められました。

通常の差動増幅回路との比較


比較のために同じ個体のLMC662で通常のゲイン100倍の差動増幅回路を構成し、フィッティングから入力換算オフセット電圧を計算したところ440μVとなりました。

もともと入力オフセット電圧の低い個体だったようですが、それでも入力オフセット電圧の影響が、チョッピングによって改善されていることがわかります。

四端子法の必要性に対する補足


ただし、ミリオーム抵抗 後編での考察の通り電流測定を行う際には、正しい四端子測定を行わないと測定値が正しく得られません。

そういった意味では、今回のチョッパアンプは、シャント抵抗のプラス側とマイコンのGND端子の間の電圧を測定していることになるので、四端子測定とは言えません。
技術奴隷さんの指摘の通り、入力側のチョッピングは外付けスイッチを用意した方がよさそうです。

一方で、R6452Aデジタルマルチメータは、fig.3に示したとおりちゃんと四端子測定になるように接続してしまったので、今回のチョッパアンプの出力と直接比較することは、厳密に言うならば、できないということになります。

関連エントリ




付録


このエントリで使用したBsch3V形式回路図ファイルとチョッパアンプの測定データを添付します。回路図は、ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。



参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: PIC OPアンプ スイッチング回路 チョッパアンプ 2ちゃんねる HP6632A R6452A 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCCPAOPアンプPIC強磁性モンテカルロ解析常微分方程式トランジスタodeインターフェース状態密度DOSecalj定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフトHP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。