LMC662で試作チョッパアンプ

汎用OPアンプをチョッピングで高精度化の方法を用いて、実測で約440μVの入力オフセット電圧を持つLMC662を低オフセット化する実験を行いました。このチョッパアンプのオフセット電圧の測定をしたところ、約55μVとなり、実際にオフセット電圧が小さくなっていることが確認できました。

004_20110328022019.png 005_20110328022019.png



LTspiceでのシミュレーション


汎用OPアンプをチョッピングで高精度化では、PICなどのマイコンと組み合わせることによって(オフセットの小さくない)汎用OPアンプを利用して、微小電圧の高精度測定を行うシミュレーションを行いました。


003_20110306112150.png
fig.1: マイコン利用チョッパアンプのスケマティック

005_20110306134701.png
fig.2: 入力電圧-出力電圧特性。横軸が入力電圧で、縦軸が出力電圧。赤で示したラインがチョッパ増幅器の出力電圧を表していて、緑が理想的な出力電圧をあらわしています。


その結果、5mVの入力オフセット電圧を持つOPアンプでも0-25mV程度の微小電圧を測定することができることがわかりました。
そこで今回は、現実のOPアンプでもシミュレーション通り低オフセット化が実現できるのかを確認するために、単電源OPアンプLMC662を対象に実験を行いました。

回路構成


利用した回路の概念図をfig.3に、もう少し詳細な回路図をfig.4に示します。


003_20110328022007.png
fig.3:測定回路の概念図

004_20110328022019.png
fig.4:ChopAMPの詳細な回路図


制御用のPICマイコンは8ピンのPIC12F683を利用しました。
基準電圧源には、鈴商で購入したLM4040で作成した4.096Vを利用しました。
A/D変換後のデータは、シリアル通信で(別のPICに接続した)キャラクタLCDに表示しました。
被測定用の微小電圧は、5mΩの抵抗(ミリオーム抵抗 前編)に0-5Aの電流を流すことによって生成しました。電源はHP6632Aシステム電源、電流とシャント電圧の測定はR6452Aデジタルマルチメータを利用しました。

測定結果


測定結果をfig.5に示します。


005_20110328022019.png
fig.5: マイコン利用自作チョッパアンプの測定結果


緑の十字シンボルが実測値で、赤のラインは測定値を線形フィッティングしたものです。

Vout = a * Vin + b
(Vout: 出力電圧, Vin:入力(シャント)電圧, a:ゲイン, b:出力オフセット電圧)

フィッティングの結果から a=102.129, b=0.0055435 という値が得られました。
従って、入力換算オフセット電圧が約55μVと求められました。

通常の差動増幅回路との比較


比較のために同じ個体のLMC662で通常のゲイン100倍の差動増幅回路を構成し、フィッティングから入力換算オフセット電圧を計算したところ440μVとなりました。

もともと入力オフセット電圧の低い個体だったようですが、それでも入力オフセット電圧の影響が、チョッピングによって改善されていることがわかります。

四端子法の必要性に対する補足


ただし、ミリオーム抵抗 後編での考察の通り電流測定を行う際には、正しい四端子測定を行わないと測定値が正しく得られません。

そういった意味では、今回のチョッパアンプは、シャント抵抗のプラス側とマイコンのGND端子の間の電圧を測定していることになるので、四端子測定とは言えません。
技術奴隷さんの指摘の通り、入力側のチョッピングは外付けスイッチを用意した方がよさそうです。

一方で、R6452Aデジタルマルチメータは、fig.3に示したとおりちゃんと四端子測定になるように接続してしまったので、今回のチョッパアンプの出力と直接比較することは、厳密に言うならば、できないということになります。

関連エントリ




付録


このエントリで使用したBsch3V形式回路図ファイルとチョッパアンプの測定データを添付します。回路図は、ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。



参考文献/使用機器




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: PIC OPアンプ スイッチング回路 チョッパアンプ 2ちゃんねる HP6632A R6452A 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ