LTspiceで温度勾配のある回路

トランジスタやダイオード、サーミスタといった電子部品は、その温度条件によって特性が変化します。LTspiceで温度解析では、回路全体が一様に温度変化をする場合についてシミュレーションをする方法を書きました。
今回は、個別の素子ごとに温度を設定することによって、回路中に温度差がある場合のシミュレーションを行いました。

003_20091210062018.png 004_20091210062018.png


LTspiceの温度解析


LTspiceで温度解析では、.tempを用いて異なった温度条件でのシミュレーションを行う方法を書きました。この方法では、回路全体が一様の温度であるという条件を暗黙のうちに考えていますが、現実の回路では個々の素子がそれぞれ異なった温度条件で動作しています。

LTspiceのtempは、そもそもローカル変数(と言う表現が適切化は知りませんが)なので、おのおのの素子に別々の温度を設定することによって、基板内で温度差のある回路のシミュレーションを行うことができます。

一様温度条件


fig.1-2は、従来の方法で、1つのトランジスタを持つ回路に対して、異なる温度条件で3回の繰り返しシミュレーションを行った結果です。


001_20091210062008.png
fig.1: 一様温度のスケマティック

002_20091210062008.png
fig.2: 一様温度のグラフ


温度勾配条件


fig.3-4は、1つの回路基板上に3つのトランジスタを並列に接続したスケマティックで、それぞれのトランジスタが別々の温度で動作しているシミュレーションです。


003_20091210062018.png
fig.3: 温度勾配条件下のスケマティック

004_20091210062018.png
fig.4: 温度勾配条件下のグラフ


個別温度の設定方法


それぞれの素子の温度を個別に設定するには、各素子の名前のあとに、temp=<温度>の形式で指定します。<温度>の部分は摂氏です。

スケマティック上の名前の上の辺り(この例では2N22222と書いてある辺り)で右クリックをすると、fig.5のようなウインドウが立ち上がるので、値を書き込みます。


005_20091210062008.png
fig.5: 個別温度の設定方法


関連エントリ




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: LTspice トランジスタ 温度解析 

comment

Secret

面内分布

面内分布というと,聞き慣れない言葉かもしれませんが,ICのウェハの中に存在する特性の偏りの事です.同じウェハから取り出されたチップでも,ウェハの場所によって特性の異なるチップがとれます.ウェハのサイズが大きくなるとなおさらです.
じゃあ,チップの中なら均一かというと,そうでもないようです.特にチップ内で熱を出す所と出さない所との間では,チップ内温度勾配が存在します.バイポーラトランジスタの場合には,温度が高い方により多く電流が流れて熱暴走の原因になります.
このシミュレーションでも,Q1,Q2,Q3を並列に接続して,どのトランジスタがより多くの電力を消費するかというのが,わかると思います.

Re: 面内分布

のりたんさん、こんにちは。
いつも勉強になるコメントをありがとうございます。

> チップ内温度勾配

定本OPアンプ回路の設計には、OPアンプICをすっぽりと覆う形の恒温槽が紹介されていましたね。

> このシミュレーションでも,Q1,Q2,Q3を並列に接続して,どのトランジスタがより多くの電力を消費するかというのが,わかると思います.

MOSFETのON抵抗は温度係数が正なので並列にすることができるが、トランジスタやダイオードは温度係数が負なので並列に接続することができない、少なくとも電流容量増強のための並列化は推奨されない、とよく聞きます。

LEDも同様に、高温になるほどVFが下がると考えていたのですが、LTspiceのLEDモデルは温度とともにVFがあがる挙動を示します。(シリコンダイオード1N4148のモデルは温度とともにVFが下がります。)
先日、簡単な温度試験として、LEDをドライヤーにあてながらVFを測ると言うことをやってみたのですが、結果は加熱とともにVFが下がる挙動となりました。
LTspiceのLEDモデルは、温度特性が間違っているのでしょうか?
FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプCPA強磁性PICモンテカルロ解析常微分方程式odeトランジスタecalj状態密度DOSインターフェース定電流スイッチング回路PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析分散関係I2Cトランジスタ技術R6452A可変抵抗ブレッドボードセミナーバンドギャップ数値積分確率論反強磁性偏微分方程式バンド構造絶縁熱設計非線形方程式ソルバフォトカプラシュミットトリガLEDLM358カオスISO-I2C三端子レギュレータGW近似A/Dコンバータカレントミラーアナログスイッチ数値微分マフィンティン半径TL431発振回路サーボPC817CUSB直流動作点解析74HC4053補間FFTBSch開発環境パラメトリック解析2ちゃんねるチョッパアンプ量子力学bzqlty電子負荷イジング模型LDA標準ロジックアセンブラ基本並進ベクトルブラべ格子単振り子熱伝導位相図TLP621キュリー温度繰り返し状態方程式MaximaVESTAスイッチト・キャパシタ相対論FETランダムウォークスピン軌道相互作用SMP六方最密充填構造抵抗不規則合金ewidthスレーターポーリング曲線GGAラプラス方程式cygwingfortranQSGW失敗談コバルト条件分岐TLP521テスタLM555Writer509TLP552格子比熱マントルデータロガー自動計測詰め回路ガイガー管ダイヤモンドQNAPMCUFXA-7020ZR過渡解析三角波UPSNE555固有値問題熱力学ブラウン運動フェルミ面awk起電力第一原理計算OpenMPfsolveubuntu最大値xcrysden最小値最適化仮想結晶近似VCA差し込みグラフスーパーセル井戸型ポテンシャル平均場近似シュレディンガー方程式FSMフラクタルOPA2277固定スピンモーメント2SC1815全エネルギー合金multiplotgnuplotc/aTeX結晶磁気異方性interp1ウィグナーザイツ胞初期値マンデルブロ集合疎行列面心立方構造fcc不純物問題非線型方程式ソルバフィルタL10構造PGA半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度三次元CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタル正規分布フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt縮退キーボード軸ラベルグラフの分割凡例トラックボールPC不規則局所モーメント片対数グラフトランス両対数グラフCK1026MAS830L直流解析Excel円周率パラメータ・モデルヒストグラム日本語最小二乗法等価回路モデルGimp線種シンボルTS-110TS-112PIC16F785LMC662化学反応文字列specx.f入出力ifortマテリアルデザインヒストグラム確率論Realforce等高線ジバニャン方程式P-10Ubuntuナイキスト線図Crank-Nicolson法陰解法熱拡散方程式HiLAPWAACircuit連立一次方程式負帰還安定性境界条件EAGLEMBE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ