LTspiceで温度勾配のある回路

トランジスタやダイオード、サーミスタといった電子部品は、その温度条件によって特性が変化します。LTspiceで温度解析では、回路全体が一様に温度変化をする場合についてシミュレーションをする方法を書きました。
今回は、個別の素子ごとに温度を設定することによって、回路中に温度差がある場合のシミュレーションを行いました。

003_20091210062018.png 004_20091210062018.png


LTspiceの温度解析


LTspiceで温度解析では、.tempを用いて異なった温度条件でのシミュレーションを行う方法を書きました。この方法では、回路全体が一様の温度であるという条件を暗黙のうちに考えていますが、現実の回路では個々の素子がそれぞれ異なった温度条件で動作しています。

LTspiceのtempは、そもそもローカル変数(と言う表現が適切化は知りませんが)なので、おのおのの素子に別々の温度を設定することによって、基板内で温度差のある回路のシミュレーションを行うことができます。

一様温度条件


fig.1-2は、従来の方法で、1つのトランジスタを持つ回路に対して、異なる温度条件で3回の繰り返しシミュレーションを行った結果です。


001_20091210062008.png
fig.1: 一様温度のスケマティック

002_20091210062008.png
fig.2: 一様温度のグラフ


温度勾配条件


fig.3-4は、1つの回路基板上に3つのトランジスタを並列に接続したスケマティックで、それぞれのトランジスタが別々の温度で動作しているシミュレーションです。


003_20091210062018.png
fig.3: 温度勾配条件下のスケマティック

004_20091210062018.png
fig.4: 温度勾配条件下のグラフ


個別温度の設定方法


それぞれの素子の温度を個別に設定するには、各素子の名前のあとに、temp=<温度>の形式で指定します。<温度>の部分は摂氏です。

スケマティック上の名前の上の辺り(この例では2N22222と書いてある辺り)で右クリックをすると、fig.5のようなウインドウが立ち上がるので、値を書き込みます。


005_20091210062008.png
fig.5: 個別温度の設定方法


関連エントリ




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: LTspice トランジスタ 温度解析 

comment

Secret

面内分布

面内分布というと,聞き慣れない言葉かもしれませんが,ICのウェハの中に存在する特性の偏りの事です.同じウェハから取り出されたチップでも,ウェハの場所によって特性の異なるチップがとれます.ウェハのサイズが大きくなるとなおさらです.
じゃあ,チップの中なら均一かというと,そうでもないようです.特にチップ内で熱を出す所と出さない所との間では,チップ内温度勾配が存在します.バイポーラトランジスタの場合には,温度が高い方により多く電流が流れて熱暴走の原因になります.
このシミュレーションでも,Q1,Q2,Q3を並列に接続して,どのトランジスタがより多くの電力を消費するかというのが,わかると思います.

Re: 面内分布

のりたんさん、こんにちは。
いつも勉強になるコメントをありがとうございます。

> チップ内温度勾配

定本OPアンプ回路の設計には、OPアンプICをすっぽりと覆う形の恒温槽が紹介されていましたね。

> このシミュレーションでも,Q1,Q2,Q3を並列に接続して,どのトランジスタがより多くの電力を消費するかというのが,わかると思います.

MOSFETのON抵抗は温度係数が正なので並列にすることができるが、トランジスタやダイオードは温度係数が負なので並列に接続することができない、少なくとも電流容量増強のための並列化は推奨されない、とよく聞きます。

LEDも同様に、高温になるほどVFが下がると考えていたのですが、LTspiceのLEDモデルは温度とともにVFがあがる挙動を示します。(シリコンダイオード1N4148のモデルは温度とともにVFが下がります。)
先日、簡単な温度試験として、LEDをドライヤーにあてながらVFを測ると言うことをやってみたのですが、結果は加熱とともにVFが下がる挙動となりました。
LTspiceのLEDモデルは、温度特性が間違っているのでしょうか?
FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性OPアンプPICCPAecaljモンテカルロ解析常微分方程式odeトランジスタ状態密度DOSインターフェース定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフト分散関係HP6632AI2C可変抵抗トランジスタ技術ブレッドボード温度解析R6452A反強磁性確率論バンドギャップセミナー数値積分熱設計非線形方程式ソルババンド構造絶縁偏微分方程式ISO-I2CLM358マフィンティン半径フォトカプラシュミットトリガカオスLED三端子レギュレータGW近似A/Dコンバータ発振回路PC817C直流動作点解析USBTL431数値微分アナログスイッチカレントミラー74HC4053サーボ量子力学単振り子チョッパアンプ補間2ちゃんねる開発環境bzqltyFFT電子負荷LDAイジング模型BSch基本並進ベクトルブラべ格子パラメトリック解析標準ロジックアセンブラ繰り返し六方最密充填構造SMPコバルトewidthFET仮想結晶近似QSGW不規則合金VCAMaximaGGA熱伝導cygwinスレーターポーリング曲線キュリー温度スイッチト・キャパシタ失敗談ランダムウォークgfortran抵抗相対論位相図スピン軌道相互作用VESTA状態方程式TLP621ラプラス方程式TLP552条件分岐NE555LM555TLP521マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測QNAPUPSWriter509ダイヤモンドデータロガー格子比熱熱力学起電力awkブラウン運動スーパーセルUbuntu差し込みグラフ第一原理計算フェルミ面fsolveCIFxcrysden最大値最小値ubuntu最適化平均場近似OpenMP井戸型ポテンシャル固有値問題シュレディンガー方程式TeX2SC1815結晶磁気異方性OPA2277フラクタルFSM固定スピンモーメントc/a非線型方程式ソルバgnuplot全エネルギーfcc初期値マンデルブロ集合縮退正規分布interp1ウィグナーザイツ胞L10構造multiplotフィルタ面心立方構造PGAハーフメタル二相共存ZnOウルツ鉱構造BaOSIC重積分磁気モーメント電荷密度化学反応クーロン散乱岩塩構造CapSenseノコギリ波デバイ模型キーボード半金属フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt合金Realforce軸ラベルグラフの分割凡例線種シンボルMAS830LCK1026LMC662PIC16F785トランス関数フィッティングトラックボールPC等価回路モデルヒストグラムパラメータ・モデル不規則局所モーメント最小二乗法TS-112TS-110直流解析ExcelGimp円周率片対数グラフ両対数グラフspecx.f疎行列三次元ifort文字列不純物問題P-10等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン入出力境界条件陰解法AACircuit熱拡散方程式HiLAPWMBEEAGLE連立一次方程式ナイキスト線図負帰還安定性Crank-Nicolson法日本語

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ