LTspiceで入力インピーダンス

増幅回路において、入力インピーダンスは重要なパラメータの1つです。今回はLTspiceを用いて交流アンプの入力インピーダンスの評価をしてみました。
その結果、ブートストラップ方式の非反転増幅回路が高い入力インピーダンスを持つことを確認しました。

001_20091127175723.png 002_20091127175723.png


交流アンプの入力インピーダンス


OPアンプを用いた直流増幅回路を考えたとき、入力インピーダンスが入力抵抗によって決まってしまう反転増幅回路よりも、非反転増幅回路のほうが入力インピーダンスを高くすることができます。

しかしながら、これをそのまま交流結合した非反転増幅回路に転用しようとしても、入力インピーダンスはあまり大きくすることができません。なぜなら、直流カットコンデンサとバイアス抵抗の直列合成インピーダンスによって、入力インピーダンスが決まってしまうからです。

こういった場合は、ブートストラップの手法を用いて入力インピーダンスを大きくすることができます。
本エントリでは、LTspiceを用いてブートストラップ式高入力インピーダンス交流非反転増幅回路の入力インピーダンスを評価する方法を書きます。

ブートストラップ回路のシミュレーション


fig.1にブートストラップ回路のスケマティックを示します。
回路の出典は、岡村 廸夫 著「定本 OPアンプ回路の設計」の「7.2 ブートストラップの技法」で私の手元にある第21版ではP195です。


001_20091127175723.png
fig.1: スケマティック

002_20091127175723.png
fig.2: 周波数-入力インピーダンス特性


10Hzの段階でも1.2MΩ程度の入力インピーダンスを持ち、周波数があがるにつれ上昇しますが、3kHz付近で頭打ちになります。
頭打ちになる理由は、ボルテージフォロワ自体の入力抵抗と容量と定本にはあります。

蛇足


定本の解説では、10Hzで12MΩの入力インピーダンスになるとありますが、シミュレーション結果は一桁低い値でした。
何かシミュレーションの方法が間違っている可能性もあります。

実を言うと、定本の回路図のコンデンサの容量には、「2」と書いてあるだけで単位がついていません。今回は2uFでシミュレーションをしましたが、20uFでシミュレーションをすれば10Hzで12MΩになります。

なお、反転増幅回路において、入力インピーダンスを高くする手法としてはT型帰還回路を用いる方法があります。

付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


参考文献




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: LTspice OPアンプ 

comment

Secret

2

私の手元にあるハードカバー版のボルテージ・フォロワ回路(p105)を確認しましたが、これも"2"とだけ書いてあります。

この回路で、100Hzの時のXC1,XC2の値を計算した結果が約800Ωとされているので、ここから逆算すると、C1は2uFであることがわかります。

きっと、"μ"活字を後で入れようとして忘れたのでしょう。

私の本では、非反転増幅器の解説(p.107)に「Aを理想増幅器とした場合、入力インピーダンスは100Hzで約250MΩにすることができます。」と、さらに威勢のよいことが書いてあります。

Re: 2

のりたんさん、こんにちは。

> 私の手元にあるハードカバー版のボルテージ・フォロワ回路(p105)

版によってページ数が違うのですね。

> きっと、"μ"活字を後で入れようとして忘れたのでしょう。

なるほど、納得です。
最初は、いろいろ悩んでしまいました。
小信号のコンデンサは"μ"を省略して書いても良いという作法があるのではないか?とか、実は本当に2Fなのではないか?とかです。
単純に回路図エディタ上で"μ"が出せなかったのでしょうね。

> 私の本では、非反転増幅器の解説(p.107)に「Aを理想増幅器とした場合、入力インピーダンスは100Hzで約250MΩにすることができます。」と、さらに威勢のよいことが書いてあります。

私の手元の本(21版)にも同じことが書いてあります。ただ、非反転増幅器の回路ではR1=R2=470kとなっていて、このパラメータでシミュレーションをしてみると、100Hzでの入力インピーダンスは280MΩぐらいになりました。
FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性OPアンプPICCPAecaljモンテカルロ解析常微分方程式odeトランジスタ状態密度DOSインターフェース定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフト分散関係HP6632AI2C可変抵抗トランジスタ技術ブレッドボード温度解析R6452A反強磁性確率論バンドギャップセミナー数値積分熱設計非線形方程式ソルババンド構造絶縁偏微分方程式ISO-I2CLM358マフィンティン半径フォトカプラシュミットトリガカオスLED三端子レギュレータGW近似A/Dコンバータ発振回路PC817C直流動作点解析USBTL431数値微分アナログスイッチカレントミラー74HC4053サーボ量子力学単振り子チョッパアンプ補間2ちゃんねる開発環境bzqltyFFT電子負荷LDAイジング模型BSch基本並進ベクトルブラべ格子パラメトリック解析標準ロジックアセンブラ繰り返し六方最密充填構造SMPコバルトewidthFET仮想結晶近似QSGW不規則合金VCAMaximaGGA熱伝導cygwinスレーターポーリング曲線キュリー温度スイッチト・キャパシタ失敗談ランダムウォークgfortran抵抗相対論位相図スピン軌道相互作用VESTA状態方程式TLP621ラプラス方程式TLP552条件分岐NE555LM555TLP521マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測QNAPUPSWriter509ダイヤモンドデータロガー格子比熱熱力学起電力awkブラウン運動スーパーセルUbuntu差し込みグラフ第一原理計算フェルミ面fsolveCIFxcrysden最大値最小値ubuntu最適化平均場近似OpenMP井戸型ポテンシャル固有値問題シュレディンガー方程式TeX2SC1815結晶磁気異方性OPA2277フラクタルFSM固定スピンモーメントc/a非線型方程式ソルバgnuplot全エネルギーfcc初期値マンデルブロ集合縮退正規分布interp1ウィグナーザイツ胞L10構造multiplotフィルタ面心立方構造PGAハーフメタル二相共存ZnOウルツ鉱構造BaOSIC重積分磁気モーメント電荷密度化学反応クーロン散乱岩塩構造CapSenseノコギリ波デバイ模型キーボード半金属フォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt合金Realforce軸ラベルグラフの分割凡例線種シンボルMAS830LCK1026LMC662PIC16F785トランス関数フィッティングトラックボールPC等価回路モデルヒストグラムパラメータ・モデル不規則局所モーメント最小二乗法TS-112TS-110直流解析ExcelGimp円周率片対数グラフ両対数グラフspecx.f疎行列三次元ifort文字列不純物問題P-10等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン入出力境界条件陰解法AACircuit熱拡散方程式HiLAPWMBEEAGLE連立一次方程式ナイキスト線図負帰還安定性Crank-Nicolson法日本語

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ