LTspiceでスイッチト・キャパシタの交流解析

LTspiceのAC解析は、スイッチングを含む回路の周波数特性をシミュレーションすることができません。そこで、スイッチング回路の評価に適した過渡解析を反復させることにより、PSoCのスイッチト・キャパシタフィルタのゲイン線図を描いてみました。

その結果、フィルタ設計ウイザードのゲイン線図とよく一致することが確認できました。このことからも、LTspiceでスイッチト・キャパシタのLTspiceモデルが現実の回路をよく再現していることを確認できました。

005_20091010201221.png 007_20091010201221.png 009_20091010201220.png


連続時間回路に対するAC解析の限界


LTspiceには、回路の交流特性のシミュレーションを行うための小信号交流解析(.acコマンド)があります。このコマンドを使えば、増幅回路やフィルタの周波数に対するゲインや位相の特性を調べることができます。(例:超音波距離計 第三回:受信回路の交流解析,LTspiceでオールパス・フィルタ)

しかしながら、このAC解析は連続時間的な回路の周波数特性を調べるためのものであるため、スイッチングを含む回路の周波数特性を調べることができません。
スイッチングを含む回路にも、周波数特性が重要になってくるものがたくさんあります。例えば、A/Dコンバータのサンプル&ホールド回路やスイッチト・キャパシタ・フィルタなどです。ADCの並列動作 その1では、スイッチングの効果を考慮せずにサンプリングスイッチのON抵抗とホールドコンデンサによって構成されるRCローパスフィルタの周波数特性のみをシミュレーションしました。

今回は、ゲインの周波数特性がフィルタ設計ウイザードに書かれているPSoCのBPF2に関して、シミュレーションと理論値との比較を行います。

過渡解析


フィルタ自体は、LTspiceでスイッチト・キャパシタで作ったモデルに対して、中心周波数が1kHzとなるように、サンプリング周波数を50kHzとしたものにしました。

解析の基本となる過渡解析のシミュレーション結果をfig.1-2に示します。


001_20091010201651.png
fig.1: スイッチト・キャパシタ・バンドパスフィルタのスケマティック

002_20091010201651.png
fig.2: 入力電圧(赤) 出力電圧(緑)


fig.2のグラフは、出力電圧が定常状態に入ったあとのものです。
入力電圧の周波数を100Hz,10kHzと変更してシミュレーションしたところ、最初の数msは出力が安定しないようです。


003_20091010201650.png
fig.3: 入力周波数100Hzの出力波形

004_20091010201650.png
fig.4: 入力周波数10kHzの出力波形


このため、交流特性は10ms以降の1周期分のデータに対して処理を適用することにより議論します。

スイッチング回路のAC解析


周波数-ゲイン特性図(ゲイン線図)を書くために、.measと.stepを組み合わせた過渡解析を行います。
ゲインは(出力電圧)/(入力電圧)なので、それぞれの1周期分の実効値を.measで計算します。


005_20091010201221.png
fig.5: スケマティック

006_20091010201650.png
fig.6: 横軸が時間,縦軸が入力電圧波形(赤)と出力電圧波形(緑)

007_20091010201221.png
fig.7: 横軸が周波数,縦軸がゲインで、単位はdB


fig.7がもとめるゲイン線図です。

フィルタ設計ウイザードとの比較


フィルタ設計ウイザードによって得られたゲイン線図をfig.8に示します。
青の破線で書かれたのが理想特性(Nominal)で、緑の実線で書かれたのが実際の回路で予測される特性(Expected)です。


008_20091010201650.png
fig.8: フィルタ設計ウイザードのゲイン線図


これに対して、LTspiceのシミュレーションから得られたfig.7のゲイン線図を画像として重ねたものをfig.9に示します。


009_20091010201220.png
fig.9: フィルタ設計ウイザードとLTspiceのゲイン線図の比較


赤のラインで示したLTspiceのシミュレーション結果は、フィルタ設計ウイザードのゲイン線図と非常によく一致しました。

ただし、よりよく一致したのは残念ながら、緑のExpectedではなく、青のNominalでした。
スイッチト・キャパシタのモデル化の際に、OPアンプやスイッチ、コンデンサ等すべてを理想的な部品としたため、ある意味当然と言えば当然の結果です。
この差を埋めるための要素としては、OPアンプの周波数特性、スイッチのON抵抗、コンデンサの漏れ電流など候補はいくつか考えられそうです。

関連エントリ




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


参考文献




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: LTspice PSoC スイッチト・キャパシタ スイッチング回路 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ