TL431で低抵抗測定用10mA定電流源

TL431の内部ブロック図を眺めていたら、低抵抗測定用10mA定電流源と構成が似ていることに気がつきました。
そこで、TL431をつかって低抵抗測定用10mA定電流回路を設計しました。(実際には極性が逆で、以前の定電流回路はシリーズレギュレータっぽい挙動、一方でTL431はシャントレギュレータっぽい挙動です。)

002_20090925235238.png 003_20090925235238.png


TL431と定電流回路


TL431の内部ブロック図をfig.1に示します。


001_20090925235228.png
fig.1: TL431の内部ブロック図


基準電圧源と誤差増幅器が接続されていて、NPNトランジスタを駆動している回路と考えれば、この回路は、100mA定電流源の回路図と似ています。


002_20090416005732.png


この定電流回路の構成は、居酒屋ガレージ日記さんの低抵抗測定用10mA定電流源です。負荷が低抵抗であるとき、すなわち電流を流したときの電圧降下が小さいときは、TL431と抵抗だけで定電流回路が作れることに気がつきました。

低抵抗測定用10mA定電流源


TL431と抵抗だけで構成した10mA定電流回路のLTspiceシミュレーションをfig.2-3に示します。


002_20090925235238.png
fig.2: TL431使用低抵抗測定用10mA定電流源のスケマティック

003_20090925235238.png
fig.3: R2の抵抗値(横軸)、R2の両端の電圧降下(緑)、R1の電流(青)


TL431のSPICEモデルはテキサスインスツルメンツのものを利用しました。

利点と欠点


定電流回路は多くの場合、基準電圧源とシャント抵抗の電圧降下を比較することによって成り立っています。TL431は、こういった基準電圧源として最もポピュラーなICのひとつですが、今回の回路では、TL431自身にエラーアンプの役割を担わせているため部品点数を削減することができます。

一方で、シャント抵抗の両端の電位差が必ず2.5Vとなってしまうと言う制約があります。こういった理由から、可変電流源のアプリケーションには適さないと思います。
電流値の微調整は、シャント抵抗の大きさを微調整することによって可能です。とはいえ、もともと基準電圧用ICなので、そこそこの精度のシャント抵抗を用意して、無調整で使うぐらいがよいのではないでしょうか。

定電流シンク


テキサスインスツルメンツのTL431のデータシートを最後の方まで見ていくと、NPNトランジスタを1石追加した定電流シンクが載っています。


004_20090925235228.png
fig.4: データシートの定電流シンク


この回路では、TL431でレギュレーションしなければならないのがNPNトランジスタのベース電流だけなので、R1を小さく大きくすることができます。

内部ブロック図レベルの理解でも、思わぬところでICが使えて、回路を簡略化することが出来ることがあります。よく使われるICはさすがによくできていると考えさせられました。

関連エントリ




参考URL




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: LTspice 定電流 TL431 

comment

Secret

データシートの定電流シンク

> R1を小さくすることができます。
電流を小さく→R1を大きく、ですよね。

fig4の回路は、ベース電流が誤差要因になってしまうので、スーパーベータまたは、ダーリントンを使う必要があるかと思います。さらに、TL431の精度まで考慮すると、0.1%誤差のRsは、やりすぎの感があります。
ベース電流の影響を小さくするためには、MOSFETを使うと良いでしょうか。

Re: データシートの定電流シンク

のりたんさん、こんにちは。

> > R1を小さくすることができます。
> 電流を小さく→R1を大きく、ですよね。
ご指摘ありがとうございます。そのとおりです。すみません。

> fig4の回路は、ベース電流が誤差要因になってしまうので、スーパーベータまたは、ダーリントンを使う必要があるかと思います。さらに、TL431の精度まで考慮すると、0.1%誤差のRsは、やりすぎの感があります。
> ベース電流の影響を小さくするためには、MOSFETを使うと良いでしょうか。

やはり、ベース電流やTL431自体の精度まで考えると、「ものすごく高精度の電流源」という感じではないですね。Rsの0.1%品の指定も、「1%よりは高精度だよ」と言った程度の意味と受けとった方がいいのかもしれません。

ベース電流分が気になるところにはMOSFETを、というのは教科書的にいっても模範解答だとは思うのですが、私はほとんどMOSFETを使ったことが無いので、正直なんともいえない感じです。
FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性OPアンプPICCPA常微分方程式モンテカルロ解析ecaljodeトランジスタ状態密度インターフェースDOS定電流スイッチング回路PDS5022半導体シェルスクリプトレベルシフト乱数HP6632AR6452AI2C可変抵抗分散関係トランジスタ技術ブレッドボード温度解析反強磁性確率論バンドギャップセミナー数値積分熱設計非線形方程式ソルババンド構造絶縁偏微分方程式ISO-I2CLM358フォトカプラ三端子レギュレータカオスLEDシュミットトリガGW近似A/Dコンバータ発振回路PC817C直流動作点解析USBマフィンティン半径数値微分アナログスイッチTL43174HC4053カレントミラーサーボ量子力学単振り子チョッパアンプ補間2ちゃんねる開発環境bzqltyFFT電子負荷LDAイジング模型BSch基本並進ベクトルブラべ格子パラメトリック解析標準ロジックアセンブラ繰り返し六方最密充填構造SMPコバルトewidthFET仮想結晶近似QSGW不規則合金VCAMaximaGGA熱伝導cygwinスレーターポーリング曲線キュリー温度スイッチト・キャパシタ失敗談ランダムウォークgfortran抵抗相対論位相図スピン軌道相互作用VESTA状態方程式TLP621ラプラス方程式TLP552条件分岐NE555LM555TLP521マントル詰め回路MCUテスタFXA-7020ZR三角波過渡解析ガイガー管自動計測QNAPUPSWriter509ダイヤモンドデータロガー格子比熱熱力学awkブラウン運動起電力スーパーセル差し込みグラフ第一原理計算フェルミ面fsolve最大値xcrysden最小値最適化ubuntu平均場近似OpenMP井戸型ポテンシャルシュレディンガー方程式固有値問題2SC1815結晶磁気異方性OPA2277非線型方程式ソルバTeXgnuplot固定スピンモーメントFSMPGAc/a全エネルギーfccフラクタルマンデルブロ集合正規分布縮退初期値interp1multiplotフィルタ面心立方構造ウィグナーザイツ胞L10構造半金属二相共存SICZnOウルツ鉱構造BaO重積分クーロン散乱磁気モーメント電荷密度化学反応CIF岩塩構造CapSenseノコギリ波デバイ模型ハーフメタルキーボードフォノンquantumESPRESSOルチル構造スワップ領域リジッドバンド模型edelt合金等高線線種凡例シンボルトラックボールPC軸ラベルグラフの分割トランス文字列CK1026MAS830L直流解析Excel不規則局所モーメントパラメータ・モデル入出力日本語最小二乗法等価回路モデルヒストグラムGimp円周率TS-110TS-112PIC16F785LMC662三次元specx.fifortUbuntu疎行列不純物問題Realforceジバニャン方程式ヒストグラム確率論マテリアルデザインP-10境界条件連立一次方程式熱拡散方程式AACircuitHiLAPW両対数グラフ片対数グラフ陰解法MBEナイキスト線図負帰還安定性Crank-Nicolson法EAGLE関数フィッティング

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ