バッテリ動作のマイコン電源に関するメモ

マイコンをバッテリ動作させたいという状況は多々あります。
バッテリ動作では、使えるエネルギーが限られるため、機器の使用時間や電源回路の変換効率など考えなければならないことが増えます。
携帯機器である場合は、大きさや重さの条件も加わるかもしれません。
今回は、バッテリ動作のマイコン電源設計に関して考えるべきことのうちいくつかをだらだらと書きました。(あまりまとまっていません。)


○三端子レギュレータと積層乾電池
9V角型積層乾電池と三端子レギュレータの組み合わせは、最も簡単にバッテリ動作のマイコン電源を作れる方法のひとつです。すべてこの組み合わせで問題がないなら楽なのですが、シリーズレギュレータゆえの効率の低さや、積層乾電池ゆえのエネルギー密度の低さが気に食わないこともあります。

レギュレータの効率は(出力電力)/(入力電力)であらわされますが、シリーズレギュレータの場合、三端子レギュレータの自己消費電力を無視すれば(出力電圧)/(入力電圧)でおよその効率を計算できます。

例えば、9Vから5Vを作る場合、効率は
5 / 9 = 0.555…
すなわち約56%となります。

そこで、単三型や単四型の電池を効率のよいスイッチングレギュレータで定電圧化することを考えます。

○エネルギーとバッテリ本数
バッテリーの本数は『理想的には』必要なエネルギーから決まります。例として、単三型のエネループ(1.2V 1900mAh)で5V1Aを2時間取り出すとすると、ものすごく大雑把な計算では少なくとも5本のバッテリーが必要になります。

5V1Aを2時間
5V * 1A * 2 = 10Wh
エネループ
1.2V * 1900mAh = 2.28Wh

10Wh / 2.28Wh = 4.39 ≒ 5本

もちろん、現実的にはスイッチングレギュレータの効率や出力電圧との兼ね合いで必要な本数は変わってきます。

○スイッチングレギュレータの回路形式
バッテリーが決まれば、次に考えるのは出力電圧・電流です。
スイッチングレギュレータの回路形式としては、昇圧型と降圧型があります。

昇圧型は、レギュレータの入力電流が大きくなるので、相対的にもろもろの寄生抵抗での損失が大きくなる欠点があります。(配線抵抗でのジュール損は電流の二乗に比例:P=R*I^2)
一方、降圧型は入力電圧が出力電圧を下回ると、出力が制御から外れてしまいます。使用とともにバッテリー電圧が下がることを考えると、直列数を増やさなければならないケースも考えられます。
昇降圧型や絶縁型もありますが、回路が複雑です。

メモなので、オチはありません。(むしろ参考URLの紹介の方がこのエントリのメインかもしれません。)

○関連エントリ


○参考URL


○フィードバック

にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: 三端子レギュレータ 

comment

Secret

入力電圧

入力電圧が下がってきたら、電池を保護するためにもレギュレータを停止させる必要があります。この時、レギュレータを停止させるロジックが動作可能な入力電圧が残っていることが重要です。

一般的な降圧型レギュレータであればスイッチをOFFするだけで入力からの電流を遮断することが出来ます。
一方、一般的な昇圧型レギュレータだと入出力間がインダクタとダイオードを介して短絡してしまうため、何らかのスイッチが必要です。
いずれにしても、電流を遮断するスイッチが必要なので、全体の素子数を考えると降圧型のほうが簡単になりそうです。でも、電池の本数が増えるのはうれしくないな。

# やっぱり、オチは、ありません。

Re: 入力電圧

最終的な回路では、昇圧できなくなるほど入力電圧が下がってしまったら、回路もろとも死んでよし。と言う設計方針もない事はないかと思いますが、実験をするにしてもなんにしても、スイッチングレギュレータの制御部が動作しなくなると入力電圧がそのまま出力に出てしまうと言うのは、昇圧型の困ったところです。

No title

はじめまして、ブログへのコメントありがとうございます。

電池駆動の場合、電源電圧と電源回路は悩みますよね。

電源回路をどうするかは、電池電圧と必要とする電圧との電圧差でしょうね。

3V動作させたい場合、リチウムイオン電池なら3端子レギュレータで良いでしょうし、ニッケル水素電池2本なら昇圧でしょうか。

まぁ、ケースバイケースなので一つの答えはないですね。

Re: No title

そら。さん、こんにちは。

一般的な1.5Vの電池は、思いのほか3.3Vや5Vといったよく使う電圧を作りにくいものです。
多くの場合、利用できるバッテリーと回路が要求する電源の仕様は、選択の余地があまり無いのですが・・・
FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ