LTspiceモンテカルロ解析の定数分布 その3

LTspiceモンテカルロ解析の定数分布 その1その2を通じて、「現実の部品定数は正規分布であること」「LTspice標準のMC関数は一様分布であること」がわかりました。
今回は、LTspiceのモンテカルロシミュレーションをより現実の部品のばらつきに近づけるためにLTspice標準のガウス関数をもちいた正規分布のモンテカルロ解析を行い、得られたヒストグラムが現実のばらつきに近いものであることを確認しました。

001_20090506222543.png 002_20090506222543.png 003_20090506222543.png


○LTspiceで正規分布モンテカルロ解析
LTspiceモンテカルロ解析の定数分布 その1その2を通じて、「現実の部品定数は正規分布であること」「LTspice標準のMC関数は一様分布であること」がわかりました。
今回は、現実の部品の実測から求められた平均μと標準偏差σをgauss関数に適用して正規分布のモンテカルロ解析を行うこととします。

○LTspiceのgauss関数
LTspiceには標準でgauss関数が用意されています。引数はひとつで、標準偏差σです。
平均μ=0の正規分布関数です。

gauss(x)
Random number from Gaussian distribution with sigma of x.


_eq_001_20090506222553.png


LTspiceモンテカルロ解析の定数分布 その2で、秋月の10kΩ誤差5%カーボン皮膜抵抗98本の抵抗値の平均と標準偏差を測定しました。

μ=9903.27
σ=32.48

これらを代入すると、抵抗値は以下のようになります。


9903.27+gauss(32.48)


○LTspiceシミュレーション
上記のガウス関数を用いて、抵抗のばらつきのシミュレーションをしました。


001_20090506222543.png
fig.1: 抵抗のばらつきを調べるためのスケマティック

002_20090506222543.png
fig.2: 抵抗のばらつき


○ヒストグラム
OpenOffice.orgとgnuplotをもちいてLTspiceの結果からヒストグラムを描きました。


003_20090506222543.png
fig.3: 実測(赤) 正規分布関数(緑) LTspiceモンテカルロシミュレーション(青)


LTspiceモンテカルロ解析の定数分布 その2でかいた赤のラインと緑のラインに加えて、今回のLTspiceシミュレーションの結果を青のラインとして描画しました。

現実の抵抗のばらつき(赤)よりもシミュレーション(青)のほうが、きもちきれいな(?)形をしていますが、およそ現実の分布に近いモデル化が出来ているといえるでしょう。

○関連エントリ


○付録
このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。
gauss.txtはヒストグラムを描くためのデータです。一列目がLTspiceの出力データ、2列目と3列目が階級と度数です。



○電子工作ブログランキング参加中
にほんブログ村 その他趣味ブログ 電子工作へ
1クリックお願いします。


tag: LTspice モンテカルロ解析 

comment

Secret

No title

 実測の抵抗値で3×σ÷μ=1%だから、仕様の+-5%よりばらつきが少ないみたいですね。サンプル数を増やしたら出てくるかも知れんけど(抵抗の保障する信頼度がどの程度かによるけど)。

Re: No title

はやしさん、おはようございます。
同一ロット内でのばらつきではそのようです。
ただしμが公称値から1%ずれているので、ロット間でのばらつきを考えるともっと悪い値になると思っています。
さらに温度変化・経年変化を考慮すると5%という値になるのだろうという感じです。

この一連の議論は、その2(http://gomisai.blog75.fc2.com/blog-entry-380.html)のコメント欄でも行いました。

No title

>この一連の議論は、その2(http://gomisai.blog75.fc2.com/blog-entry-380.html)のコメント欄でも行いました

あら、ほんと。

抵抗の保障する信頼度がわかれば(つまり全体の何%の抵抗が公称5%以内に入るのか)、σを幾つにして解析すれば良いかわかるのではないかと思いました。逆もまた然りですが。

Re: No title

> 抵抗の保障する信頼度がわかれば(つまり全体の何%の抵抗が公称5%以内に入るのか)、σを幾つにして解析すれば良いかわかるのではないかと思いました。逆もまた然りですが。

抵抗の誤差は最悪値なので、100%すべての抵抗が公称5%以内に入るはずです。

いっぽう、正規分布関数ではσをどんなに小さくとっても、公称誤差から外れる値をとる可能性をゼロに出来ないという点は問題です。そのため、正規分布関数を用いたモンテカルロ解析で、他と大きく傾向の異なるシミュレーション結果が出た場合は、そのシミュレーションが部品定数の誤差範囲内で起こったことであるかどうかの確認をしなければならないことになります。

私のブログには次回予告をすると、その記事はかかれることがないというジンクスがあるのであまりやりたくないのですが、「その5」では公称誤差が3σとなるようにした正規分布関数でのモンテカルロ解析を、「その6」ではすべての部品定数が公称誤差範囲内になるように三角分布を用いたモンテカルロ解析を試すつもりです。

No title

>抵抗の誤差は最悪値なので、100%すべての抵抗が公称5%以内に入るはずです。

 これは、5%以上の誤差の品は検査ではじいているということですか?しかし、温度変化や経年変化があるなら、検査ではすべて除去できないのでは??
 このような場合の抵抗値の保証すべき信頼度が、規格か何かで定められていれば、それに対応するようにσを決められるなあ、というのが前コメントの趣旨でした(その2の流れを見る限り、見積もりは難しそうですね)。
 とはいえ、5%を外れる抵抗が表れる確率は、とても小さいようなので、三角形分布のような有限領域で値を持つ解析は興味深いです。
 この件に関してこの辺で。

Re: No title

>  これは、5%以上の誤差の品は検査ではじいているということですか?しかし、温度変化や経年変化があるなら、検査ではすべて除去できないのでは??

メーカーが具体的ににどのような方法で誤差の最悪値を保証しているのかは知りませんが、動作を保証する温度範囲や保証期間はデータシートを見れば書いてあるはずです。多分。
(現実的には、アマチュア用途のカーボン抵抗に関して、メーカーと型番を意識して使っているという人はほとんどいないと思いますが。)

全くの余談ですが、外国製の金属皮膜抵抗の中にはカラーコードで表示されている誤差を上回る誤差をもつものも出回っているようです。極端に安い金属皮膜抵抗は抵抗値を測ってみたほうがよいかもしれません。

>  とはいえ、5%を外れる抵抗が表れる確率は、とても小さいようなので、三角形分布のような有限領域で値を持つ解析は興味深いです。

今回の一連のエントリでは、分布のモデル化の方法/LTspiceでのシミュレーション方法の紹介を主眼にしています。実際にLTspiceでモンテカルロ解析をするときにどのモデルを採用するかは読者の皆さんにお任せします。
FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCOPアンプPICCPA強磁性常微分方程式モンテカルロ解析odeトランジスタ状態密度インターフェーススイッチング回路ecaljPDS5022DOS定電流半導体シェルスクリプト乱数レベルシフトHP6632Aブレッドボード分散関係温度解析R6452Aトランジスタ技術I2C可変抵抗反強磁性セミナー数値積分確率論偏微分方程式バンド構造非線形方程式ソルババンドギャップ絶縁熱設計シュミットトリガLEDA/Dコンバータ三端子レギュレータLM358ISO-I2CGW近似カオスフォトカプラマフィンティン半径TL431数値微分PC817Cアナログスイッチ直流動作点解析発振回路USBサーボカレントミラー74HC4053パラメトリック解析LDAbzqltyチョッパアンプ量子力学FFT2ちゃんねるアセンブラBSch開発環境電子負荷ブラべ格子イジング模型補間基本並進ベクトル標準ロジック単振り子キュリー温度繰り返しMaxima状態方程式失敗談相対論スピン軌道相互作用FETランダムウォーク熱伝導六方最密充填構造コバルトewidthTLP621GGAQSGW不規則合金位相図抵抗SMPcygwinラプラス方程式スレーターポーリング曲線gfortranスイッチト・キャパシタ詰め回路TLP552三角波格子比熱TLP521条件分岐LM555MCUNE555QNAPマントルテスタ過渡解析FXA-7020ZRダイヤモンドデータロガーガイガー管自動計測Writer509UPSシュレディンガー方程式ブラウン運動awk差し込みグラフ熱力学平均場近似仮想結晶近似VCAfsolve井戸型ポテンシャルVESTA起電力スーパーセルOpenMP第一原理計算ubuntu固有値問題L10構造OPA2277interp12SC1815fccウィグナーザイツ胞面心立方構造フィルタジバニャン方程式ヒストグラム確率論マテリアルデザインspecx.f等高線正規分布PGAフェルミ面非線型方程式ソルバ初期値固定スピンモーメントスワップ領域ルチル構造リジッドバンド模型edeltquantumESPRESSO岩塩構造BaOSIC二相共存ZnOウルツ鉱構造フォノンデバイ模型c/aノコギリ波全エネルギーFSMTeXgnuplotmultiplotハーフメタルCapSense半金属合金結晶磁気異方性Ubuntu文字列入出力TS-110TS-112疎行列Excel直流解析ヒストグラム円周率不規則局所モーメントトラックボールPC等価回路モデルパラメータ・モデルキーボードRealforce三次元マンデルブロ集合フラクタル化学反応重積分縮退日本語最小二乗法関数フィッティングGimpMAS830LHiLAPW熱拡散方程式両対数グラフナイキスト線図負帰還安定性陰解法Crank-Nicolson法P-10クーロン散乱境界条件連立一次方程式片対数グラフEAGLEPIC16F785LMC662トランスシンボルCK1026線種凡例MBEAACircuitグラフの分割軸ラベルifort

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ