スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。


LTspiceでCMOSシュミットトリガ回路

コメント欄でのりたんさんに指摘されたとおり、内容がかなり怪しいのであとで直して差し替えます。
・・・おそらく今週中ぐらいには。ごめんなさい。
画像とシミュレーションファイルを差し替えました。

LTspiceでシュミットトリガ回路LTspiceで7414では、トランジスタを用いたシュミットトリガ回路のシミュレーションをしました。今回は、74HC14などに使われるMOSFETで構成されたシュミットトリガ回路の紹介・シミュレーション・消費電力の比較をしました。

CMOSシュミットトリガ回路スケマティック CMOSシュミットトリガ回路ヒステリシス特性


LTspiceでシュミットトリガ回路LTspiceで7414では、バイポーラトランジスタ(BJT)を用いたシュミットトリガ回路をシミュレーションしました。
一方で、現在の電子工作では74HC14などのCMOSで構成されたものを使う場合のほうが多いと思われます。CMOSでもBJTと同様に、電流と抵抗を使ったフィードバック回路を組んで、シュミットトリガを実現することは出来るでしょう。しかしながら、その場合はCMOSの特徴のひとつである低消費電力が活きません。そこで、実際の74HC14等のCMOSシュミットトリガ回路は、BJTシュミットトリガ回路とは異なった回路で実装されています。

○LTspiceシミュレーション
NXP Semiconductors - Standard ICs SPICE Modelsにて、74HC14を含むSPICEモデルのダウンロードが出来ます。テキストファイルなので接続関係が分かりにくいですが、ベルが鳴るさんの標準 CMOS ロジックのトランジスターモデルに回路図があります。今回はこの回路図を基にLTspiec標準のMOSFETモデルを用いたスケマティックでシミュレーションをします。

○ヒステリシス特性の確認
fig.1,fig.2にCMOSシュミットトリガ回路のスケマティックとシミュレーション結果のグラフを示します。


CMOSシュミットトリガ回路スケマティック
fig.1: CMOSシュミットトリガ回路のスケマティック

CMOSシュミットトリガ回路ヒステリシス特性
fig.2: シミュレーション結果、横軸が入力電圧、縦軸が出力電圧


ループからヒステリシス特性を確認できます。

○消費電力の確認
LTSpiceを用いてBJTシュミットトリガ回路の消費電力とCMOSシュミットトリガ回路の消費電力を比較しました。
fig.3,fig.4にBJTシュミットトリガ回路のスケマティックとシミュレーション結果です。シミュレーション自体は、LTspiceでシュミットトリガ回路のものです。


001_20090325074314.png
fig.3: BJTシュミットトリガ回路のスケマティック

BJTシュミットトリガ回路消費電力
fig.4: シミュレーション結果、青のラインが消費電力


次にCMOSシュミットトリガ回路の消費電力のシミュレーション結果です。


CMOSシュミットトリガ回路消費電力
fig.5: 青のラインがCMOSシュミットトリガ回路の消費電力


BJT版とCMOS版を比較するとCMOS版のほうが常に低消費電力であることが分かります。ピーク電力でもCMOSのほうが3桁程度小さく、静的消費電力ではCMOS版ではほぼゼロになるのに対してBJT版は2つのトランジスタの両方のコレクタ電流を同時になくすことが出来ません。

○関連エントリ


○参考URL


○付録
このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。



tag: LTspice FET シュミットトリガ 

comment

Secret

CMOSシュミットトリガ回路

M1とM3のバックゲートをVDDに、M5とM6のバックゲートをVSSにつないでください。なぜ、これらのノードが浮いているのに動作するのか不思議です。

V2の変化時間を長く、例えば現行0.5msecのところを100秒ぐらいにしてください。こうすると、伝播遅延の影響が少なくなって、よりDCシミュレーションに近くなります。

実際の回路では、各トランジスタのサイズによってスレシホルドや消費電力が決まってきます。

Re: CMOSシュミットトリガ回路

のりたんさん、コメントありがとうございます。本当に心強いです。

> M1とM3のバックゲートをVDDに、M5とM6のバックゲートをVSSにつないでください。なぜ、これ
> らのノードが浮いているのに動作するのか不思議です。
私が動作を理解してなかったのがバレバレでしたね。私もなぜこれで動作しているのか分からなかったのですが、バックゲートの電位が固定されているなら理解できそうです。
家に転がっていた実は出所のよく分からない回路図から起こしたのですが、その回路図がミスプリでした。めんどくさがらずに、ちゃんと原典を引かないとだめですね。

> V2の変化時間を長く、例えば現行0.5msecのところを100秒ぐらいにしてください。こうすると、
> 伝播遅延の影響が少なくなって、よりDCシミュレーションに近くなります。
将来的に発振回路(http://gomisai.blog75.fc2.com/blog-entry-363.html)から三角波を入れて実験しようかと思っていたのですが、やはりシミュレーションではゆっくりにしたほうがよかったですね。
それに、バックゲート付きで小信号用のコンプリメンタルなMOSFETの現物なんて私には探せそうにないですし。

> 実際の回路では、各トランジスタのサイズによってスレシホルドや消費電力が決まってきま
> す。
きっとそこら辺が半導体メーカーのノウハウになるんでしょうね。
FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCCPAOPアンプPIC強磁性モンテカルロ解析常微分方程式トランジスタodeインターフェース状態密度DOSecalj定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフトHP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。