スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。


OPアンプの同相入力電圧範囲とバイアス

OPアンプの同相入力電圧範囲と出力電圧範囲は電源電圧に依存します。広い電圧範囲を得るためには、広い電源電圧を確保することとレールtoレールOPアンプを用いることが簡単です。
しかし、前者は回路全体の電源構成の、後者は選択するOPアンプのコストや性能といった制約を受けます。

そういった場合は、逆に入力信号や出力信号を何らかの方法で加工するとよい場合があります。今回は、入力信号を抵抗分圧して同相入力電圧範囲を満たすことを考えました。

001_20090215234312.png 002_20090215234318.png


○単電源OPアンプのGND付近での非線形性とバイアス
単電源OPアンプのGND付近での非線形性とバイアスのエントリでは、単電源OPアンプの入出力特性が動作電圧範囲内でもフラットではないため、入力信号をちょっと高い電圧と分圧することによって、OPアンプの入力端子にかかる電圧をOPアンプの特性がよくなる点で使うという話を書きました。

○単電源OPアンプで負の信号を扱う
バイアスをかける方法をもう一歩踏み込むと、マイナスの電圧の信号を単電源で扱えるようにするレベルシフトの手法に至ります。
絶版ですが、OPアンプ活用100の実践ノウハウのP38-40に『16 単電源動作では完全0V出力にならない…レベル・シフトを使うのが利口』という項目があります。

レベルシフトなどというと大げさですが、やっていることはバイアスと一緒で、ただの抵抗分圧です。


001_20090215234312.png
fig.1: レベルシフト回路

002_20090215234318.png

fig.2: 横軸が入力電圧、緑が出力電圧、青が非反転入力端子の電圧


グラフは横軸が入力電圧で、緑のラインが出力電圧です。回路全体の挙動としては、±2Vの信号が2.5±2Vの信号に変換されています。青が非反転入力端子の電圧です。抵抗分圧されているため、OPアンプの入力端子にかかる電圧は正の電圧になることが分かります。

○そのほかの応用
上手にバイアスをかければ、単電源OPアンプでも負電圧の信号を扱えることが分かりました。
コツは、OPアンプの非反転入力端子にかかる電圧が同相入力電圧範囲に収まるようにするということです。
バーチャルショートが成り立っていれば、反転入力端子も非反転入力端子とほぼ同電位になります。

このコツさえ押さえれば、応用として単電源で両電源用のOPアンプを使うことも出来るでしょう。

○付録
このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。




tag: LTspice OPアンプ レベルシフト 

comment

Secret

質問です

「同相入力電圧範囲」、「同相出力電圧範囲」の用語についての疑問です。
単純に入力可能な電圧範囲、出力可能な電圧範囲を表すだけなら、「入力電圧範囲」、「出力電圧範囲」でよいように思うのですが、なぜ「同相」が付いているのでしょうか?

Re: 質問です

tessyさん、こんにちは。

OPアンプの入力電圧の範囲は「同相入力電圧」と「差動入力電圧」の二種類が存在します。

正しく負帰還をかけてOPアンプを使用すると、反転入力端子と非反転入力端子の電位はほぼ同じになります。これに対して、負帰還をかけずにコンパレータのような使い方をすると二つの入力端子の間にも電圧がかかることになります。
同相入力電圧範囲というのは、前者のように二つの入力端子間に電位差が無いときに入力することのできる電圧の範囲を意味しています。

汎用OPアンプは、多くの場合コンパレータとして使っても壊れません。(すべてがそうだとは保証できませんが。)
しかしながら、一例を挙げるなら、高精度OPアンプなどの中には、二つの入力端子間にダイオードが逆並列に入っていたりする様なものもあります。そういったOPアンプでは、仮にそれぞれの端子にかかる電圧が同相入力電圧範囲内に収まっていても、二つの入力端子間の電位差が大きいと壊れる可能性があります。

詳しくは、下記のアプリケーションノートなどを参照してください。
逆並列ダイオードが入っているのは図2.2.2の場合ですね。

ROHM Application Note: オペアンプ・コンパレータの基礎
http://rohmfs.rohm.com/jp/products/databook/applinote/ic/amp_linear/common/opamp_comparator_tutorial_appli-j.pdf

「同相出力電圧範囲」という用語は、あまり聞いたことが無い気がします。
FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoC強磁性CPAPICOPアンプecalj状態密度モンテカルロ解析常微分方程式トランジスタodeDOSインターフェースPDS5022定電流スイッチング回路分散関係半導体シェルスクリプトレベルシフト乱数HP6632A可変抵抗トランジスタ技術R6452AI2C温度解析ブレッドボードバンドギャップ確率論反強磁性セミナーバンド構造数値積分偏微分方程式非線形方程式ソルバ熱設計絶縁三端子レギュレータISO-I2CA/DコンバータシュミットトリガフォトカプラカオスPWscfGW近似LM358LEDマフィンティン半径発振回路USB数値微分TL431PC817Cサーボアナログスイッチ直流動作点解析補間カレントミラー74HC4053bzqltyチョッパアンプFFT2ちゃんねる開発環境量子力学単振り子電子負荷VESTAQuantumESPRESSO標準ロジックパラメトリック解析ブラべ格子イジング模型アセンブラLDA基本並進ベクトルBSchSMPTLP621失敗談六方最密充填構造コバルト位相図QSGWGGAスイッチト・キャパシタewidth状態方程式VCAキュリー温度繰り返し最適化仮想結晶近似不規則合金熱伝導gfortran相対論抵抗FETMaximaQuantum_ESPRESSOcygwinランダムウォークラプラス方程式スピン軌道相互作用スレーターポーリング曲線マントルシュレディンガー方程式ZnO自動計測QNAP固有値問題ダイヤモンドデータロガー井戸型ポテンシャルTLP552CIFxcrysdenゼーベック係数熱力学条件分岐MCU最小値UPS格子比熱最大値ガイガー管平均場近似過渡解析Writer509スーパーセルFXA-7020ZR差し込みグラフ第一原理計算テスタ起電力OpenMP三角波ubuntuLM555NE555ブラウン運動詰め回路ハーフメタルawkfsolveUbuntuフェルミ面TLP521トランスMAS830LPGACK1026OPA2277フィルタトレーナーバトルEAGLEノコギリ波負帰還安定性ナイキスト線図MBEP-10LMC6622SC1815CapSenseAACircuitPIC16F785入出力固定スピンモーメントFSMTeX結晶磁気異方性全エネルギーc/a合金multiplotgnuplot非線型方程式ソルバL10構造正規分布等高線ジバニャン方程式ヒストグラム確率論初期値interp1fcc面心立方構造ウィグナーザイツ胞半金属デバイ模型磁気モーメント電荷密度重積分SIC不純物問題擬ポテンシャル状態図cif2cellPWgui二相共存ウルツ鉱構造edeltquantumESPRESSOフォノンリジッドバンド模型スワップ領域BaO岩塩構造ルチル構造マテリアルデザインspecx.fフラクタルマンデルブロ集合キーボードRealforceクーロン散乱三次元疎行列縮退化学反応関数フィッティング最小二乗法Excel直流解析PCTS-110TS-112日本語パラメータ・モデル等価回路モデル文字列ポケモンGO熱拡散方程式HiLAPW両対数グラフ片対数グラフ陰解法Crank-Nicolson法ifort境界条件連立一次方程式グラフの分割軸ラベルヒストグラム不規則局所モーメントスーパーリーグ円周率Gimp凡例線種シンボルトラックボール

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。