スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。


ADCの並列動作 その2

ADCの並列動作 その1では単一のA/Dコンバータに対して周波数特性を調べるためLTspiceでシミュレーションを行いました。その結果、SAR型A/Dコンバータの入力段のS&H回路はローパスフィルタの特性を持つため変換可能な信号の帯域に制約を与えることが分かりました。
今回は、ADCを並列動作によるサンプリングレート向上とともに上記の特性の影響が大きくなることをLTspieを用いたシミュレーションで示しました。

002_20090111235005.png 003_20090111235010.png


ADC並列動作のLTspiceシミュレーション


ADCの並列動作 その1では単一のA/Dコンバータに対して周波数特性を調べるためLTspiceでシミュレーションを行いました。
今回は、過渡解析を用いてサンプリングスイッチの動作も含めたADCの並列動作をシミュレーションします。


001_20090111234937.png
fig.1: 単一のA/Dコンバータ

002_20090111235005.png
fig.2: A/Dコンバータの並列化


fig.1が並列化前のスケマティックです。fig.2はfig.1の点線内部の回路をコピーし、サンプリングスイッチのタイミングパルスの位相をずらしたものです。

1kHzのシミュレーション



003_20090111235010.png
fig.3: 1kHzの入力信号(黄緑)と出力データ(青)


黄緑のラインが1kHzの入力信号で、青のラインが出力データを示したものです。
位相の回転と量子化ノイズが見られます。位相回転の要因は、ローパスフィルタとしての特性よりもサンプリング時とA/D変換完了までのタイムラグが主要だと思います。
このタイムラグは一定であるので、ソフトウエアで後から補正することができるでしょう。

10kHzのシミュレーション



004_20090111235016.png
fig.4: 並列化スケマティック10kHz

005_20090111235021.png
fig.5: 10kHzの入力信号(黄緑)と出力データ(青)


前述のとおり、タイムラグに起因する位相の回転はソフトウェアで補正できます。量子化ノイズが相対的に大きくみえるのも我慢するとします。
とすると、やはり問題は振幅の減衰です。

AVRのS/H回路モデル


私がAVRを使ったことがないので、S/H回路の動作タイミングのモデルはかなりいい加減です。
AVRのADCにおけるS/H回路への充電のためのサンプリングスイッチ開閉動作をよく知らないので、最悪値として、トラ技のタイミングチャートの中から「A-D変換の開始指示」から「実際のA-D変換スタート」までの1.6usをサンプリングスイッチを閉じておく時間として採用しました。
しかし、各々のマイコンに関しては1chしかADCを使っていないので、変換以外の時間をすべて蓄積時間として使うことができるはずです。よって、実際の帯域はもっとマシだと思います。

結論


蓄電時間の見積もりが適当なことと、サンプリング抵抗のばらつきがあることなどから、AVRのADC並列動作でどこまで高速なデジタルオシロが作れるかということに関して定量的な評価ができているかという点は疑わしいと思います。
しかし、デジタルオシロスコープの周波数特性は、サンプリングレートのみによっては決まらないということを説明することはできたと思います。
また、このエントリで示した具体的な数値に関しても、ADCを並列使用するに際してのワーストケースとしては意味のあるものだと思います。

また、オシロスコープを使うときに少し意識すべきこととして、出力の表示は必ずしも入力信号と相似形をしているとは限らないということです。アナログオシロでは、帯域外の高周波信号は減衰しますし、デジタルオシロスコープではサンプリングレートしか書かれていない場合もあります。
なんにせよ、計測器を使うときには性能の限界に対して余裕のある領域で使っていることを確認する必要があります。

関連エントリ




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


参考文献




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: LTspice A/Dコンバータ 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRScilabmachikaneyamaKKRPSoCCPAOPアンプPIC強磁性モンテカルロ解析常微分方程式トランジスタodeインターフェース状態密度DOSecalj定電流PDS5022スイッチング回路半導体シェルスクリプト乱数レベルシフトHP6632A温度解析ブレッドボードI2CR6452A分散関係トランジスタ技術可変抵抗確率論数値積分反強磁性セミナー非線形方程式ソルバ絶縁バンドギャップ熱設計偏微分方程式バンド構造GW近似カオス三端子レギュレータLEDフォトカプラシュミットトリガISO-I2CA/DコンバータLM358USBカレントミラーTL431マフィンティン半径PC817C数値微分アナログスイッチ発振回路サーボ直流動作点解析74HC40532ちゃんねる標準ロジックチョッパアンプLDAアセンブラFFTbzqltyイジング模型ブラべ格子開発環境補間量子力学電子負荷BSchパラメトリック解析単振り子基本並進ベクトル熱伝導繰り返しGGAMaximaTLP621ewidthSMP相対論抵抗位相図ランダムウォークスピン軌道相互作用六方最密充填構造不規則合金FETコバルト失敗談QSGWcygwinスレーターポーリング曲線スイッチト・キャパシタラプラス方程式gfortranキュリー温度状態方程式条件分岐格子比熱TLP552LM555TLP521三角波NE555過渡解析FXA-7020ZRWriter509テスタ詰め回路MCUマントルダイヤモンドQNAPデータロガーガイガー管自動計測UPS井戸型ポテンシャルawk第一原理計算仮想結晶近似ブラウン運動差し込みグラフ平均場近似fsolve起電力熱力学OpenMPスーパーセル固有値問題最適化最小値VCAシュレディンガー方程式VESTAubuntu最大値面心立方構造PGAOPA2277L10構造非線型方程式ソルバ2SC1815fccフェルミ面等高線ジバニャン方程式ヒストグラム確率論マテリアルデザイン正規分布結晶磁気異方性interp1フィルタ初期値ウィグナーザイツ胞c/aルチル構造岩塩構造スワップ領域リジッドバンド模型edeltBaOウルツ鉱構造重積分SIC二相共存ZnOquantumESPRESSOCapSensegnuplotmultiplot全エネルギー固定スピンモーメントFSM合金ノコギリ波フォノンデバイ模型ハーフメタル半金属TeXifortTS-110不規則局所モーメントTS-112等価回路モデルパラメータ・モデルヒストグラムExcel円周率GimpトラックボールPC直流解析入出力文字列マンデルブロ集合キーボードフラクタル化学反応三次元Realforce縮退日本語最小二乗法関数フィッティング疎行列シンボル線種ナイキスト線図陰解法負帰還安定性熱拡散方程式EAGLECrank-Nicolson法連立一次方程式P-10クーロン散乱Ubuntu境界条件MBEHiLAPW軸ラベルトランスCK1026MAS830L凡例PIC16F785LMC662AACircuit両対数グラフ片対数グラフグラフの分割specx.f

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。