ADCの並列動作 その1

トランジスタ技術2009年1月号に「汎用マイコンで500kHzサンプリングとストレージ動作を実現 8パラAVRでA-D変換するUSBオシロスコープ」という記事があります。このトラ技の記事では、A/Dコンバータを並列動作させることによって、見かけ上サンプリングレートが高速のA/Dコンバータとするというテクニックを使っています。
しかし、ADCの入力回路にはローパスフィルタとしての特性があるため、無制限にサンプリングレートが上げられるわけではありません。

今回は、AVRのA/Dコンバータの入力回路のモデルを作成し、交流解析を行いました。

002_20090111215258.png 003_20090111215326.png


トラ技2009年1月号の8パラAVRオシロスコープ


トランジスタ技術2009年1月号に「汎用マイコンで500kHzサンプリングとストレージ動作を実現 8パラAVRでA-D変換するUSBオシロスコープ」という記事があります。
PICやAVRといったマイコンには、A/Dコンバータモジュールを内蔵したモデルが存在します。しかしながら、これらのA/Dコンバータは変換時間として10us~100us程度を要求するため、高速なサンプリングを行うことができません。

トラ技の「8パラAVRでA-D変換するUSBオシロスコープ」の記事では、A/Dコンバータを持つAVRを8個並列に接続し、位相をずらしてサンプリングすることによりサンプリングレートを高めたUSBオシロスコープの製作を行っています。

この記事に対して私は、次のような疑問を持ちました。
  • ADC並列化による高速化に限度はないのか
  • あるとすれば、いかなる原因であろうか


これらの疑問に答える鍵となるのは、A/Dコンバータの入力部分であるサンプル&ホールド(S/H)回路です。

逐次比較型(SAR)A/Dコンバータ


逐次比較型のA/Dコンバータは、その構造上、変換中にアナログ入力電圧が変動すると正しく変換を行うことができません。そこで、変換の前段に入力電圧を保持するためのS/H回路を持っています。
以下に示すのが、ATmega644Pのデータシートから引用したA/Dコンバータの入力回路です。


001_20090111215235.png
fig.1: AVRのS/H回路


この図から読み取れるとおり、A/Dコンバータの入力回路は(アナログマルチプレクサやサンプリングスイッチの)抵抗とサンプリングコンデンサによって、ローパスフィルタが構成されています。したがって、S/H回路自体が周波数特性を持っていることになります。

また、だいぶ昔のエントリになりますが、PICのA/Dコンバータの入力回路に関しては、A/Dコンバータ その1その2で書きました。参考にしてください。

サンプリングレートと帯域


デジタルオシロスコープの動作速度を表すパラメータとして、サンプリングレートがよく用いられます。一方で、アナログオシロスコープにはサンプリングレートという概念はなく、速度は帯域で表されます。
ところが、デジタルオシロスコープといえど入力段はアナログ回路です。したがって、この入力段の回路にも周波数特性があるはずです。

S/H回路の周波数特性


fig.1で挙げたAVRのデータシート上の入力回路をLTspiceを用いたシミュレーションにかけてみました。


002_20090111215258.png
fig.2: AVRのADC入力段スケマティック


入力端子のバイアス電流源は、信号源の出力インピーダンスが低いとして無視し、サンプリングスイッチは閉じたままという条件で交流解析を行いました。
(シミュレータ上で並列化することを想定して、ボルテージフォロワとアナログマルチプレクサを追加してありますが、今回は特に利用していません。)


003_20090111215326.png
fig.3: 出力電圧(実線)と位相(破線)


上のグラフがサンプリングコンデンサの電圧です。
当然ですが、普通のローパスフィルタです。


004_20090111215334.png
fig.4: サンプリングコンデンサの電圧と入力信号の間の誤差


fig.4は、入力信号と読み取った信号の誤差をあらわしたものです。縦軸はログスケールで単位はVです。

ADCの交流特性


このように、A/Dコンバータの入力回路にも通過可能な帯域が存在します。しかしながら、同時に通常のサンプリングレートによる制約も存在します。
最終的なADCの交流特性は、これら二つの要因のうちより低周波側から主要になる方に制約されるであろうと考えられます。

このため、A/Dコンバータを並列接続することはサンプリングレートの向上には貢献しますが、一方で入力回路自体が変わっていないので、並列数を増やしていくといずれローパスフィルタの帯域の壁にぶつかるだろう事が予想されます。

関連エントリ




付録


このエントリで使用したLTspiceのシミュレーション用ファイルを添付します。ファイル名末尾の".txt"を削除して、"_"を"."に変更すれば使えるはずです。


参考文献




フィードバック



にほんブログ村 その他趣味ブログ 電子工作へ

 ↑ 電子工作ブログランキング参加中です。1クリックお願いします。


コメント・トラックバックも歓迎です。 ↓      


 ↓ この記事が面白かった方は「拍手」をお願いします。


tag: LTspice A/Dコンバータ 

comment

Secret

FC2カウンター
カテゴリ
ユーザータグ

LTspiceAkaiKKRmachikaneyamaScilabKKRPSoCCPAOPアンプPIC強磁性常微分方程式モンテカルロ解析トランジスタode状態密度DOSインターフェースecaljスイッチング回路定電流PDS5022半導体シェルスクリプト乱数レベルシフトHP6632A温度解析可変抵抗I2Cブレッドボード分散関係トランジスタ技術R6452A数値積分反強磁性バンドギャップ確率論セミナー絶縁偏微分方程式非線形方程式ソルババンド構造熱設計カオスA/DコンバータISO-I2Cフォトカプラ三端子レギュレータシュミットトリガLEDGW近似LM358アナログスイッチ数値微分TL43174HC4053マフィンティン半径発振回路サーボ直流動作点解析カレントミラーPC817CUSB単振り子bzqlty開発環境BSch2ちゃんねる電子負荷イジング模型LDAチョッパアンプ量子力学補間アセンブラFFTブラべ格子標準ロジックパラメトリック解析基本並進ベクトルewidthキュリー温度QSGWGGA失敗談MaximaSMPTLP621スイッチト・キャパシタ熱伝導コバルト相対論スピン軌道相互作用六方最密充填構造繰り返しFETランダムウォークcygwingfortran不規則合金状態方程式ラプラス方程式抵抗スレーターポーリング曲線位相図格子比熱マントルデータロガー自動計測ダイヤモンドガイガー管QNAPUPS固有値問題条件分岐井戸型ポテンシャルシュレディンガー方程式詰め回路MCU第一原理計算起電力熱力学スーパーセルVCALM555仮想結晶近似awkTLP521NE555ubuntufsolveブラウン運動OpenMPVESTA最大値テスタ差し込みグラフFXA-7020ZRWriter509三角波TLP552平均場近似最適化最小値過渡解析LMC662トランスPIC16F785CapSenseMBEナイキスト線図CK1026フィルタP-10負帰還安定性EAGLEAACircuit2SC1815OPA2277PGAノコギリ波縮退非線型方程式ソルバL10構造fcc面心立方構造結晶磁気異方性TeX全エネルギー固定スピンモーメントFSMウィグナーザイツ胞interp1ヒストグラム確率論マテリアルデザインspecx.fジバニャン方程式等高線初期値フェルミ面正規分布c/agnuplotBaO岩塩構造ルチル構造ウルツ鉱構造ZnO重積分SIC二相共存スワップ領域リジッドバンド模型半金属合金multiplotハーフメタルデバイ模型edeltquantumESPRESSOフォノンifortUbuntuマンデルブロ集合キーボードRealforce関数フィッティングフラクタルクーロン散乱CIF化学反応三次元最小二乗法日本語直流解析PCトラックボールExcelTS-110パラメータ・モデル等価回路モデルTS-112疎行列文字列HiLAPW両対数グラフ片対数グラフ熱拡散方程式陰解法境界条件連立一次方程式Crank-Nicolson法グラフの分割軸ラベルヒストグラム不規則局所モーメント入出力円周率Gimp凡例線種シンボルMAS830L

最新コメント
リンク

にほんブログ村 その他趣味ブログ 電子工作へ